Articles | Volume 373
https://doi.org/10.5194/piahs-373-7-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-373-7-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of urbanization on rainfall-runoff processes: case study in the Liangshui River Basin in Beijing, China
Zongxue Xu
CORRESPONDING AUTHOR
College of Water Sciences, Beijing Normal University, Beijing 100875,
China
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100875, China
Gang Zhao
College of Water Sciences, Beijing Normal University, Beijing 100875,
China
Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100875, China
Related authors
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Qi Chu, Zongxue Xu, Yiheng Chen, and Dawei Han
Hydrol. Earth Syst. Sci., 22, 3391–3407, https://doi.org/10.5194/hess-22-3391-2018, https://doi.org/10.5194/hess-22-3391-2018, 2018
Short summary
Short summary
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high temporal and spatial scales for simulating an extreme sub-daily heavy rainfall (SDHR) event. Both objective verification metrics and subjective verification were used to identify the likely best set of the configurations. Results show that re-evaluation of these WRF settings is of great importance in improving the accuracy and reliability of the rainfall simulations in the regional SDHR applications.
Xiaoxi Gao, Depeng Zuo, Zongxue Xu, Siyang Cai, and Han Xianming
Proc. IAHS, 379, 159–167, https://doi.org/10.5194/piahs-379-159-2018, https://doi.org/10.5194/piahs-379-159-2018, 2018
Short summary
Short summary
The blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability, inter-annual variabilityand spatial distribution of the blue water and green water is relatively similar.
Xianming Han, Depeng Zuo, Zongxue Xu, Siyang Cai, and Xiaoxi Gao
Proc. IAHS, 379, 105–112, https://doi.org/10.5194/piahs-379-105-2018, https://doi.org/10.5194/piahs-379-105-2018, 2018
Short summary
Short summary
To further protect the ecology of the study area, remote sensing image technology is used to analyze the temporal and spatial distribution characteristics of vegetation in the Yarlung Zangbo River Basin by splicing the remote sensing image of a time series (from February 2000 to December 2016). It can be found that vegetation coverage is better in low elevation areas,vegetation change shows a weak sustainability and the vegetation growth is more affected by the temperature than the precipitation.
Siyang Cai, Depeng Zuo, Zongxue Xu, Xianming Han, and Xiaoxi Gao
Proc. IAHS, 379, 73–82, https://doi.org/10.5194/piahs-379-73-2018, https://doi.org/10.5194/piahs-379-73-2018, 2018
Short summary
Short summary
Drought is a natural and recurring feature of climate; occurring in virtually all climatic regimes. Wei River is of great importance in social and economic in China. The temporal and spatial variations of drought in the Wei River basin were investigated by calculating the drought indexes. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature.
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018, https://doi.org/10.5194/piahs-379-463-2018, 2018
Wenchao Sun, Yuanyuan Wang, Guoqiang Wang, Xingqi Cui, Jingshan Yu, Depeng Zuo, and Zongxue Xu
Hydrol. Earth Syst. Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, https://doi.org/10.5194/hess-21-251-2017, 2017
Short summary
Short summary
The possibility of using a short period of streamflow data (less than one year) to calibrate a physically based distributed hydrological model is evaluated. Contrary to the common understanding of using data of several years, it is shown that only using data covering several months could calibrate the model effectively, which indicates that this approach is valuable for solving the calibration problem of such models in data-sparse basins.
Z. X. Xu and Q. Chu
Proc. IAHS, 369, 97–102, https://doi.org/10.5194/piahs-369-97-2015, https://doi.org/10.5194/piahs-369-97-2015, 2015
Short summary
Short summary
Three hourly assimilated precipitation series with 0.1 deg. are used to analyze the features and trends of extreme precipitation in Beijing, China. The results show that: (1) the local climate and topography are two main factors influencing the spatial distributions of precipitation; (2) areas with greater precipitation threshold may have shorter precipitation days; (3) extreme precipitation amount (48% of precipitation) concentrated on urban areas and mountain area within only 5 to 7 days.
Z. X. Xu, X. J. Yang, D. P. Zuo, Q. Chu, and W. F. Liu
Proc. IAHS, 369, 121–127, https://doi.org/10.5194/piahs-369-121-2015, https://doi.org/10.5194/piahs-369-121-2015, 2015
Short summary
Short summary
Spatiotemporal characteristics of extreme precipitation and temperature in Yunnan Province, China, were analyzed by using observed daily data at 28 meteorological stations from 1959-2013 in this study.Both maximum and minimum temperature showed significant increasing tendency while there was not obvious changes for precipitation.It was noted that extreme precipitation and temperature events occurred more frequently in central region where the risk of extreme climatic events was greater.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Qi Chu, Zongxue Xu, Yiheng Chen, and Dawei Han
Hydrol. Earth Syst. Sci., 22, 3391–3407, https://doi.org/10.5194/hess-22-3391-2018, https://doi.org/10.5194/hess-22-3391-2018, 2018
Short summary
Short summary
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high temporal and spatial scales for simulating an extreme sub-daily heavy rainfall (SDHR) event. Both objective verification metrics and subjective verification were used to identify the likely best set of the configurations. Results show that re-evaluation of these WRF settings is of great importance in improving the accuracy and reliability of the rainfall simulations in the regional SDHR applications.
Xiaoxi Gao, Depeng Zuo, Zongxue Xu, Siyang Cai, and Han Xianming
Proc. IAHS, 379, 159–167, https://doi.org/10.5194/piahs-379-159-2018, https://doi.org/10.5194/piahs-379-159-2018, 2018
Short summary
Short summary
The blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability, inter-annual variabilityand spatial distribution of the blue water and green water is relatively similar.
Xianming Han, Depeng Zuo, Zongxue Xu, Siyang Cai, and Xiaoxi Gao
Proc. IAHS, 379, 105–112, https://doi.org/10.5194/piahs-379-105-2018, https://doi.org/10.5194/piahs-379-105-2018, 2018
Short summary
Short summary
To further protect the ecology of the study area, remote sensing image technology is used to analyze the temporal and spatial distribution characteristics of vegetation in the Yarlung Zangbo River Basin by splicing the remote sensing image of a time series (from February 2000 to December 2016). It can be found that vegetation coverage is better in low elevation areas,vegetation change shows a weak sustainability and the vegetation growth is more affected by the temperature than the precipitation.
Siyang Cai, Depeng Zuo, Zongxue Xu, Xianming Han, and Xiaoxi Gao
Proc. IAHS, 379, 73–82, https://doi.org/10.5194/piahs-379-73-2018, https://doi.org/10.5194/piahs-379-73-2018, 2018
Short summary
Short summary
Drought is a natural and recurring feature of climate; occurring in virtually all climatic regimes. Wei River is of great importance in social and economic in China. The temporal and spatial variations of drought in the Wei River basin were investigated by calculating the drought indexes. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature.
Kaige Chi, Zhao Gang, Bo Pang, and Ziqian Huang
Proc. IAHS, 379, 357–362, https://doi.org/10.5194/piahs-379-357-2018, https://doi.org/10.5194/piahs-379-357-2018, 2018
Short summary
Short summary
Sediment and runoff changes of seven hydrological stations along the Lower Yellow River from 1980 to 2003 were analyzed at multiple time scale. Research results indicate that (1) The runoff and sediment of the Lower Yellow River during 20 years show the different trend.The runoff reduced, but sediment were not same.(2)The time scale has big effect on the analysis results. (3) The changes of runoff and sediment show high persistence without additional measures, which proved the necessary of WSRS.
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018, https://doi.org/10.5194/piahs-379-463-2018, 2018
Wenchao Sun, Yuanyuan Wang, Guoqiang Wang, Xingqi Cui, Jingshan Yu, Depeng Zuo, and Zongxue Xu
Hydrol. Earth Syst. Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, https://doi.org/10.5194/hess-21-251-2017, 2017
Short summary
Short summary
The possibility of using a short period of streamflow data (less than one year) to calibrate a physically based distributed hydrological model is evaluated. Contrary to the common understanding of using data of several years, it is shown that only using data covering several months could calibrate the model effectively, which indicates that this approach is valuable for solving the calibration problem of such models in data-sparse basins.
Z. X. Xu and Q. Chu
Proc. IAHS, 369, 97–102, https://doi.org/10.5194/piahs-369-97-2015, https://doi.org/10.5194/piahs-369-97-2015, 2015
Short summary
Short summary
Three hourly assimilated precipitation series with 0.1 deg. are used to analyze the features and trends of extreme precipitation in Beijing, China. The results show that: (1) the local climate and topography are two main factors influencing the spatial distributions of precipitation; (2) areas with greater precipitation threshold may have shorter precipitation days; (3) extreme precipitation amount (48% of precipitation) concentrated on urban areas and mountain area within only 5 to 7 days.
Z. X. Xu, X. J. Yang, D. P. Zuo, Q. Chu, and W. F. Liu
Proc. IAHS, 369, 121–127, https://doi.org/10.5194/piahs-369-121-2015, https://doi.org/10.5194/piahs-369-121-2015, 2015
Short summary
Short summary
Spatiotemporal characteristics of extreme precipitation and temperature in Yunnan Province, China, were analyzed by using observed daily data at 28 meteorological stations from 1959-2013 in this study.Both maximum and minimum temperature showed significant increasing tendency while there was not obvious changes for precipitation.It was noted that extreme precipitation and temperature events occurred more frequently in central region where the risk of extreme climatic events was greater.
Cited articles
Alam, S., Willems, P., and Alam, M.: Comparative Assessment of Urban Flood Risks Due to Urbanization and Climate Change in the Turnhout Valley of Belgium, J. Adv. Res., 3, 14–23, 2014.
Brun, S. E. and Band, L. E.: Simulating runoff behavior in an urbanizing watershed, Comput. Environ. Urban, 24, 5–22, 2000.
Chang, H.: Basin Hydrologic Response to Changes in Climate and Land Use: the Conestoga River Basin, Pennsylvania, Phys. Geogr., 24, 222–247, 2003.
Chester, L., Arnold, J. C., and James, G.: Impervious Surface Coverage: The Emergence of a Key Environmental Indicator, J. Am. Plann. Assoc., 62, 243–258, 1998.
Guan, M., Sillanpää, N., and Koivusalo, H.,: Modelling and assessment of hydrological changes in a developing urban catchment, Hydrol. Process., 29, 2880–2894, 2015.
Guo, F., Hanfei, Q. U., Zeng, H., Cong, P., and Geng, X.: Flood hazard forecast of Pajiang River flood storage and detention basin based on MIKE21, J. Nat. Disasters, 22, 144–152, 2013.
Koudelak, P. and West, S.: Sewerage network modelling in Latvia, use of InfoWorks CS and Storm Water Management Model 5 in Liepaja city, Water Environ. J., 22, 81–87, 2007.
Nirupama, N. and Simonovic, S. P.: Increase of Flood Risk due to Urbanization: A Canadian Example, Nat. Hazards, 40, 25–41, 2007.
Peng, H. Q., Liu, Y., Wang, H. W., and Ma, L. M.: Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model, Environ. Sci. Pollut. R., 22, 15712–15721, 2015.
Rossman, L. A.: Storm Water Management Model User's Manual Version 5.0, EPA United States Environmental Protection Agency, 2015.
Saghafian, B., Farazjoo, H., Bozorgy, B., and Yazdandoost, F.: Flood Intensification due to Changes in Land Use, Water Resour. Manag., 22, 1051–1067, 2008.
Short summary
China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flooding risk. In this study, the major purpose is to investigate the impact of land use/cover changes on hydrological processes and the flooding risk in Beijing.
China is undergoing rapid urbanization during the past decades. For example, the proportion of...