Articles | Volume 372
https://doi.org/10.5194/piahs-372-311-2015
https://doi.org/10.5194/piahs-372-311-2015
12 Nov 2015
 | 12 Nov 2015

Exploitation of the full potential of PSI data for subsidence monitoring

M. Crosetto, N. Devanthéry, M. Cuevas-González, O. Monserrat, and B. Crippa

Related authors

ADVANCED ANALYSIS TOOLS FOR THE EUROPEAN GROUND MOTION SERVICE DATA
M. Crosetto, S. Shahbazi, M. Cuevas-González, J. Navarro, and M. Mróz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1229–1234, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1229-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1229-2023, 2023
ANALYSIS OF THE PRODUCTS OF THE COPERNICUS GROUND MOTION SERVICE
M. Crosetto, L. Solari, A. Barra, O. Monserrat, M. Cuevas-González, R. Palamà, Y. Wassie, S. Shahbazi, S. M. Mirmazloumi, B. Crippa, and M. Mróz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 257–262, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-257-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-257-2022, 2022
INFRASTRUCTURE MONITORING USING THE INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) TECHNIQUE
Q. Gao, M. Crosetto, O. Monserrat, R. Palama, and A. Barra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 271–276, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-271-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-271-2022, 2022
INTERFEROMETRIC SAR DEFORMATION MONITORING USING PASSIVE REFLECTORS AND ASCENDING AND DESCENDING PASSES
N. Kotulak, M. Mleczko, M. Crosetto, R. Palamà, and M. Mróz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 285–292, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-285-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-285-2022, 2022
INSAR DEFORMATION TIME SERIES CLASSIFICATION USING A CONVOLUTIONAL NEURAL NETWORK
S. M. Mirmazloumi, Á. F. Gambin, Y. Wassie, A. Barra, R. Palamà, M. Crosetto, O. Monserrat, and B. Crippa
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 307–312, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-307-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-307-2022, 2022

Cited articles

Baarda, W.: A Testing Procedure for Use in Geodetic Networks, Rijkscommissie voor Geodesie, Delft, the Netherlands, 1968.
Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., and Novali, F.: Permanent scatterer InSAR reveals seasonal and longterm aquifer-system response to groundwater pumping and artificial recharge, Water Resour. Res., 44, W02407, https://doi.org/10.1029/2007WR006152, 2008.
Björck, Å.: Numerical Methods for Least Square Problems, Siam, Philadelphia, PA, USA, 1996.
Bovenga, F., Wasowski, J., Nitti, D. O., Nutricato, R., and Chiaradia, M. T.: Using COSMO/SkyMed X-band and ENVISAT Cband SAR interferometry for landslides analysis, Remote Sens. Environ., 119, 272–285, 2012.
Cigna, F., Osmanoglu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., DeMets, C., and Wdowinski, S.: Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico, Remote Sens. Environ., 117, 146–161, 2012.
Download
Short summary
Persistent Scatterer Interferometry (PSI) is a remote sensing technique used to monitor land deformation from interferometric SAR images. The main products that can be derived using the PSI technique are the deformation maps and the time series of deformation. In this paper, an approach to apply the PSI technique to a stack of Sentinel-1 images is described. Sentinel-1 deformation maps and time series obtained over the metropolitan area of Mexico DF are discussed.