Articles | Volume 372
https://doi.org/10.5194/piahs-372-305-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-372-305-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, No. 126 Yanta Road, Xian, Shaanxi, China
Q. Zhang
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, No. 126 Yanta Road, Xian, Shaanxi, China
C. Yang
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, No. 126 Yanta Road, Xian, Shaanxi, China
J. Zhang
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, No. 126 Yanta Road, Xian, Shaanxi, China
W. Zhu
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, No. 126 Yanta Road, Xian, Shaanxi, China
F. Qu
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Y. Liu
College of Geology Engineering and Geomatics, Chang'an University, Xian Shaanxi, China
Related authors
C. Zhao, Z. Li, S. Zhang, G. Huang, C. Yang, and S. Duan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, 2023
Y. Kang, C. Y. Zhao, Q. Zhang, and C. S. Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 723–728, https://doi.org/10.5194/isprs-archives-XLII-3-723-2018, https://doi.org/10.5194/isprs-archives-XLII-3-723-2018, 2018
C. J. Liu, C. Y. Zhao, L. Y. Ji, Z. R. Zhang, and H. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1029–1033, https://doi.org/10.5194/isprs-archives-XLII-3-1029-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1029-2018, 2018
X. J. Liu, C. Y. Zhao, B. H. Wang, and W. F. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1135–1139, https://doi.org/10.5194/isprs-archives-XLII-3-1135-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1135-2018, 2018
Y. Niu, C. Zhao, J. Zhang, L. Wang, B. Li, and L. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1333–1338, https://doi.org/10.5194/isprs-archives-XLII-3-1333-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1333-2018, 2018
M. M. Peng, C. Y. Zhao, Q. Zhang, J. Zhang, and Y. Y. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1375–1380, https://doi.org/10.5194/isprs-archives-XLII-3-1375-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1375-2018, 2018
F. Zhang, C. S. Yang, C. Y. Zhao, and R. C. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2251–2255, https://doi.org/10.5194/isprs-archives-XLII-3-2251-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2251-2018, 2018
C. Y. Zhao, X. J. Liu, W. Zhu, and W. F. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2341–2345, https://doi.org/10.5194/isprs-archives-XLII-3-2341-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2341-2018, 2018
C. Zhao, Q. Zhang, Y. Yin, Z. Lu, C. Yang, W. Zhu, and B. Li
Nat. Hazards Earth Syst. Sci., 13, 2851–2861, https://doi.org/10.5194/nhess-13-2851-2013, https://doi.org/10.5194/nhess-13-2851-2013, 2013
C. Zhao, Z. Li, S. Zhang, G. Huang, C. Yang, and S. Duan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 59–64, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-59-2023, 2023
Y. Kang, C. Y. Zhao, Q. Zhang, and C. S. Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 723–728, https://doi.org/10.5194/isprs-archives-XLII-3-723-2018, https://doi.org/10.5194/isprs-archives-XLII-3-723-2018, 2018
C. J. Liu, C. Y. Zhao, L. Y. Ji, Z. R. Zhang, and H. Sun
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1029–1033, https://doi.org/10.5194/isprs-archives-XLII-3-1029-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1029-2018, 2018
X. J. Liu, C. Y. Zhao, B. H. Wang, and W. F. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1135–1139, https://doi.org/10.5194/isprs-archives-XLII-3-1135-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1135-2018, 2018
Y. Niu, C. Zhao, J. Zhang, L. Wang, B. Li, and L. Fan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1333–1338, https://doi.org/10.5194/isprs-archives-XLII-3-1333-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1333-2018, 2018
M. M. Peng, C. Y. Zhao, Q. Zhang, J. Zhang, and Y. Y. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1375–1380, https://doi.org/10.5194/isprs-archives-XLII-3-1375-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1375-2018, 2018
F. Zhang, C. S. Yang, C. Y. Zhao, and R. C. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2251–2255, https://doi.org/10.5194/isprs-archives-XLII-3-2251-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2251-2018, 2018
C. Y. Zhao, X. J. Liu, W. Zhu, and W. F. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2341–2345, https://doi.org/10.5194/isprs-archives-XLII-3-2341-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2341-2018, 2018
C. Zhao, Q. Zhang, Y. Yin, Z. Lu, C. Yang, W. Zhu, and B. Li
Nat. Hazards Earth Syst. Sci., 13, 2851–2861, https://doi.org/10.5194/nhess-13-2851-2013, https://doi.org/10.5194/nhess-13-2851-2013, 2013
Cited articles
Berardino, F., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry, IEEE T. Geosci. Remote, 40, 2375–2383, 2002.
Hooper, A.: Persistent Scaterrer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation, PhD thesis, Stanford University, Palo Alto, 2006.
Hooper, A.: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35, L16302, https://doi.org/10.1029/2008GL034654, 2008.
Hooper, A. and Zebker, H.: Phase unwrapping in three dimensions with application to InSAR time series, J. Opt. Soc. Am. A, 24, 2737–2747, 2007.
Hooper, A., Zebker, H., Segall, P., and Kampes, B.: A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett., 31, 611–615, 2004.
Hooper, A., Segall, P., and Zebker, H.: Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galapagos, J. Gephys. Res., 112, B07407, https://doi.org/10.1029/2006JB004763, 2007.
Jung, H. S., Lu, Z., Won, J., Poland, M., and Miklius, A.: Mapping three-dimensional surface deformation by combining multiple aperture interferometry and conventional interferometry: application to the June 2007 eruption of K\=ılauea Volcano, Hawaii, IEEE Geosci. Remote Sens. Lett., 8, 34–38, 2011.
Lanari, R., Mora, O., Mununta, M., Mallorqui, J., Berardino, P., and Sansonsti, E.: A Small Baseline Approach for Investigating Deformation on Full resolution Differential SAR Interferograms, IEEE T. Geosci. Remote, 42, 1377–1386, 2004.
Liu, Y.: The Study on the Mass Mechanism of Ground Fissures in Piedmont Fault on the Plate–Case of Yuncheng Basin Xiaxian Ground Fissures, master thesis, Chang'an University, Xi'an, 2014.
Qu, F., Zhang, Q., Lu, Z., Zhao, C., Yang, C., and Zhang, J.: Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis, Remote Sens. Environ., 155, 366–376, 2014.
Samsonov, S. and Tiampo, K.: Analytical optimization of DInSAR and GPS dataset for derivation of three-dimensional surface motion, IEEE Geosci. Remote Sens. Lett., 3, 107–111, 2006.
Wright, T. J., Parsons, B. E., and Lu, Z.: Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, https://doi.org/10.1029/2003GL018827, 2004.
Zebker, H. A. and Villaseno, J.: Decorrelation in interferometric radar echoes, IEEE T. Geosci. Remote, 30, 950–959, 1992.
Short summary
large coverage land subsidence in Fenwei basin, China is monitored.
Small scale ground fissures deformation is monitored.
Two dimensional ground fissures deformation is achieved.
PS-InSAR, SBAS-InSAR and 2D deformation inversion methods are employed.
large coverage land subsidence in Fenwei basin, China is monitored.
Small scale ground...