Articles | Volume 372
https://doi.org/10.5194/piahs-372-173-2015
https://doi.org/10.5194/piahs-372-173-2015
12 Nov 2015
 | 12 Nov 2015

Potential of Holocene deltaic sequences for subsidence due to peat compaction

E. Stouthamer and S. van Asselen

Related authors

Factors controlling natural subsidence in the Po Plain
Luigi Bruno, Bruno Campo, Bianca Costagli, Esther Stouthamer, Pietro Teatini, Claudia Zoccarato, and Alessandro Amorosi
Proc. IAHS, 382, 285–290, https://doi.org/10.5194/piahs-382-285-2020,https://doi.org/10.5194/piahs-382-285-2020, 2020
Short summary
Dutch national scientific research program on land subsidence: Living on soft soils – subsidence and society
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020,https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Towards a legal strategy fitting today's challenge of reducing impacts of subsidence in the Netherlands
Martijn van Gils, Esther Stouthamer, and Frank Groothuijse
Proc. IAHS, 382, 825–829, https://doi.org/10.5194/piahs-382-825-2020,https://doi.org/10.5194/piahs-382-825-2020, 2020
Short summary
The 6M approach to land subsidence
Gilles Erkens and Esther Stouthamer
Proc. IAHS, 382, 733–740, https://doi.org/10.5194/piahs-382-733-2020,https://doi.org/10.5194/piahs-382-733-2020, 2020
Short summary
Future Deltas Utrecht University research focus area: towards sustainable management of sinking deltas
E. Stouthamer and S. van Asselen
Proc. IAHS, 372, 179–182, https://doi.org/10.5194/piahs-372-179-2015,https://doi.org/10.5194/piahs-372-179-2015, 2015
Short summary

Cited articles

Berendsen, H. J. A. and Stouthamer, E.: Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, the Netherlands, Palaeogeogr. Palaeocl., 161, 311–335, 2000.
Bos, I. J.: Architecture and facies distribution of organic-clastic lake fills in the fluviodeltaic rhine-meuse system, the Netherlands, J. Sediment. Res., 80, 339–356, 2010.
Bird, M. I., Fifield, L. K., Chua, S., and Goh, B.: Calculating sediment compaction for radiocarbon dating of intertidal sediments, Radiocarbon 46, 421–435, 2004.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013.
Cohen, K. M.: Differential subsidence within a coastal prism: late-Glacial – Holocene tectonicsin The Rhine Meuse delta, the Netherlands, PhD thesis Utrecht University, Utrecht, the Netherlands, Geographical Studies, 316, 2003.
Download
Short summary
The potential for subsidence of Holocene deltas due to peat compaction is mainly determined by the 3D distribution of different lithologies, and associated geotechnical properties, in the subsurface. Our study shows that sequences containing thick high-organic peat layers with no or a thin clastic overburden have the highest potential for high amounts of subsidence due to compaction. In addition, peat layers above groundwater level have high potential for subsidence due oxidation and compaction.