Articles | Volume 370
https://doi.org/10.5194/piahs-370-9-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-370-9-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks
S. Gaitan
CORRESPONDING AUTHOR
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1 room 4.75, 2628CN, Delft, the Netherlands
J. A. E. ten Veldhuis
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1 room 4.75, 2628CN, Delft, the Netherlands
Related authors
No articles found.
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-260, https://doi.org/10.5194/hess-2024-260, 2024
Preprint under review for HESS
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a crucial hydrological model parameter. Root zone storage—the soil water accessible to plants—adapts to climate but is often treated as constant in models. We estimated climate-adapted storage for six Austrian Alps catchments. Although storage increased, streamflow projections showed minimal change, indicating that dynamic root zone representation is less critical in humid regions but warrants more study in arid areas.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018, https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Short summary
The effect of storm scale and movement on runoff flows in urban catchments remains poorly understood due to the complexity of urban land use and man-made infrastructure. In this study, interactions among rainfall, urbanisation and peak flows were analyzed based on 15 years of radar rainfall and flow observations. We found that flow-path networks strongly smoothed rainfall peaks. Unexpectedly, the storm position relative to impervious cover within the basins had little effect on flow peaks.
Christian Bouwens, Marie-Claire ten Veldhuis, Marc Schleiss, Xin Tian, and Jerôme Schepers
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-751, https://doi.org/10.5194/hess-2017-751, 2018
Revised manuscript not accepted
Short summary
Short summary
Urban drainage systems are challenged by both urbanization and climate change, intensifying flooding impacts by rainfall. We performed this study to better understand and predict this process. The paper provides an approach to analyze the functioning of an urban drainage system without the need to run hydrodynamic models. Rainfall thresholds for urban flood prediction were derived, which surprisingly are only approximately half of the theoretical drainage system design capacity.
Abdellah Ichiba, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Philippe Bompard, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, https://doi.org/10.5194/hess-22-331-2018, 2018
Short summary
Short summary
This paper proposes a two-step investigation to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependency observed within GIS data inputted in urban hydrological models. Then an intensive multi-scale modelling work was carried out to confirm effects on model performances. The model was implemented at 17 spatial resolutions ranging from 100 to 5 m. Results allow the understanding of scale challenges in hydrology modelling.
Matthieu Spekkers, Viktor Rözer, Annegret Thieken, Marie-Claire ten Veldhuis, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 17, 1337–1355, https://doi.org/10.5194/nhess-17-1337-2017, https://doi.org/10.5194/nhess-17-1337-2017, 2017
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Susana Ochoa-Rodriguez, Patrick Willems, Abdellah Ichiba, Li-Pen Wang, Rui Pina, Johan Van Assel, Guendalina Bruni, Damian Murla Tuyls, and Marie-Claire ten Veldhuis
Hydrol. Earth Syst. Sci., 21, 2361–2375, https://doi.org/10.5194/hess-21-2361-2017, https://doi.org/10.5194/hess-21-2361-2017, 2017
Short summary
Short summary
Data from 10 urban or peri-urban catchments located in five EU countries are used to analyze the imperviousness distribution and sewer network geometry. Consistent scale invariant features are retrieved for both (fractal dimensions can be defined), which enables to define a level of urbanization. Imperviousness representation in operational model is also found to exhibit scale-invariant features (even multifractality). The research was carried out as part of the UE INTERREG IV RainGain project.
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017, https://doi.org/10.5194/hess-21-1991-2017, 2017
Short summary
Short summary
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to characterise flow patterns according to basin features. Instead of sampling flows at fixed time intervals, we looked at how fast given amounts of flow were accumulated. By doing so, we could identify patterns of flow regulation in urban streams and quantify flashiness of hydrological response. We were able to show that in this region, higher urbanisation was clearly associated with lower basin flashiness.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
M. H. Spekkers, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 15, 261–272, https://doi.org/10.5194/nhess-15-261-2015, https://doi.org/10.5194/nhess-15-261-2015, 2015
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Nat. Hazards Earth Syst. Sci., 14, 2531–2547, https://doi.org/10.5194/nhess-14-2531-2014, https://doi.org/10.5194/nhess-14-2531-2014, 2014
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, https://doi.org/10.5194/hess-17-913-2013, 2013
Cited articles
Ashley, R., Balmforth, D., Saul, A., and Blanskby, J.: Flooding in the future predicting climate change, risks and responses in urban areas, Water Sci. Technol., 52, 265–273, 2005.
Centraal Bureau voor de Statistiek: Statistische gegevens per vierkant – Statistischegegevenspervierkantupdatejuli2013.pdf, Kaart met statistieken per vierkant van 100 bij 100 meter, available at: http://www.cbs.nl/NR/rdonlyres/661D884F-CF5B-4192-8138-EA959D540EFE/0/Statistischegegevenspervierkantupdatejuli2013.pdf (last access: 26 March 2014), 2013.
Dutch Ministry of Interior and Kingdom Relations: Open Data NEXT in English – Data.overheid.nl: het opendataportaal van de Nederlandse overheid, Data.overheid.nl: het opendataportaal van de Nederlandse overheid [online] available at: https://data.overheid.nl/english (last access: 1 December 2014), 2014.
Fontanazza, C. M., Freni, G., La Loggia, G., and Notaro, V.: Uncertainty evaluation of design rainfall for urban flood risk analysis, Water Sci. Technol., 63, 2641–2650, 2011.
Gaitan, S., Calderoni, L., Palmieri, P., Ten Veldhuis, M.-C., Maio, D., and van Riemsdijk, M. B.: From Sensing to Action: Quick and Reliable Access to Information in Cities Vulnerable to Heavy Rain, IEEE Sensors J., 14, 4175–4184, https://doi.org/10.1109/JSEN.2014.2354980, 2014.
Gaitan, S., ten Veldhuis, J. A. E., and van de Giesen, N. C.: Spatial distribution of rainfall-related complaints along urban overland flow-paths in review, Water Resour. Manage., 2015.
Gower, J. C.: A general coefficient of similarity and some of its properties, Biometrics, 27, 857–871, https://doi.org/10.2307/2528823, 1971.
Guttman, A.: R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 1984 ACM SIGMOD international conference on Management of data, New York, USA, June 1984, 14, 47–57, 1984.
Jacobs, J. C. J.: The Rotterdam approach: connecting water with opportunities, in Water Sensitive Cities, edited by: Howe, C. and Mitchell, C., IWA Publishing, 2012.
Jongman, R. H. G., Braak, C. J. F. T., and van Tongeren, O. F. R.: Data Analysis in Community and Landscape Ecology, Cambridge University Press, 1995.
Kadaster Nederland: BAG, Basisregistraties Adressen en Gebouwen (BAG), available at: https://www.kadaster.nl/bag (last access: 26 March 2014), 2013.
KNMI: KNMI radar gegevens, available at: http://www.knmi.nl/datacentrum/catalogus/catalogus/catalogus-gegevens-overzicht.html (last access: 12 February 2014), 2013.
Legendre, P. and Legendre, L. (Eds.): Chapter 8 – Cluster analysis, in: Numerical Ecology, vol. 24, 337–424, Elsevier, available at: http://www.sciencedirect.com/science/bookseries/01678892/24 (last access: 14 January 2015), 2012.
Melo, N., Santos, B. F., and Leandro, J.: A prototype tool for dynamic pluvial-flood emergency planning, Urban Water J., 12, 79–88, https://doi.org/10.1080/1573062X.2014.975725, 2015.
Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R. D., Rondinel, R. R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., van Assel, J., Kroll, S., Murla-Tuyls, D., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and ten Veldhuis, J. A. E. M.-C.: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling output: A multi-catchment investigation, in review, J. Hydrol., 2014.
Overeem, A., Holleman, I., and Buishand, A.: Derivation of a 10-year radar-based climatology of rainfall, J. Appl. Meteorol. Clim., 48, 1448–1463, https://doi.org/10.1175/2009JAMC1954.1, 2009.
Spekkers, M. H., Kok, M., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: A statistical analysis of insurance damage claims related to rainfall extremes, Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, 2013.
Spekkers, M. H., Kok, M., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: Decision-tree analysis of factors influencing rainfall-related building structure and content damage, Nat. Hazards Earth Syst. Sci., 14, 2531–2547, https://doi.org/10.5194/nhess-14-2531-2014, 2014.
ten Veldhuis, J. A. E. and Clemens, F. H. L. R.: The efficiency of asset management strategies to reduce urban flood risk, Water Sci. Technol., 64, 1317, https://doi.org/10.2166/wst.2011.715, 2011.
ten Veldhuis, J. A. E., Clemens, F. H. L. R., and van Gelder, P. H. A. J. M.: Quantitative fault tree analysis for urban water infrastructure flooding, Struct. Infrastruct. E., 7, 809–821, https://doi.org/10.1080/15732470902985876, 2011.
Short summary
The objective of this paper is to outline opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks. To that end, a cluster analysis is performed. Results indicate that incidence of
rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
The objective of this paper is to outline opportunities for multivariate analysis of open...