Articles | Volume 370
https://doi.org/10.5194/piahs-370-193-2015
https://doi.org/10.5194/piahs-370-193-2015
11 Jun 2015
 | 11 Jun 2015

Integration of uncertainties in water and flood risk management

B. Höllermann and M. Evers

Abstract. Water management is challenged by hydrological and socio-economic change and hence often forced to make costly and enduring decisions under uncertainty. Thus, thinking beyond current acknowledged and known limits is important to consider these changes and the dynamic of socio-hydrological interactions. For example, reservoir management aiming at flood reduction and mitigation has to cope with many different aspects of uncertainty. The question is to what extent can, do and should these uncertainties have implications on planning and decision-making?

If practice recognises uncertainties they frequently use risk based decision approaches to acknowledge and handle them by e.g. relating them to other decision relevant factors, while science is mostly preoccupied in reducing these uncertainties. Both views are of relevance and a risk focused approach is needed to bridge the different perspectives covering all significant aspects of uncertainty. Based on a review of various characteristics and perceptions of uncertainty, this paper proposes a new analytical framework where the various aspects of uncertainty are condensed and a risk perspective is added. It thus goes beyond a pure typology and provides an overview of neuralgic points and their location and appearance during the decision-making process. Moreover this paper supports a structured and evaluated knowledge assessment and knowledge transfer for informed decision-making and points out potential fields of action and uncertainty reduction. Reservoir management targeting at flood prevention is used as an illustration to present the analytical framework, which is also amended by the needs and demands of practitioners, using first results of expert interviews.

Download
Short summary
Water management is challenged by socio-hydrological change and forced to make decisions under uncertainty. E.g. reservoir management aiming at flood mitigation copes with various aspects of uncertainty. The proposed framework condenses these aspects under a risk based approach and provides an overview of neuralgic points of uncertainty and fields of action and uncertainty reduction. The framework enables practitioners to consistently integrate uncertainties in their decision-making processes.