Articles | Volume 369
https://doi.org/10.5194/piahs-369-97-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-369-97-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climatological features and trends of extreme precipitation during 1979–2012 in Beijing, China
Z. X. Xu
CORRESPONDING AUTHOR
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
Joint Center for Global Change Studies, Beijing, 100875, China
Q. Chu
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
Joint Center for Global Change Studies, Beijing, 100875, China
Related authors
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Qi Chu, Zongxue Xu, Yiheng Chen, and Dawei Han
Hydrol. Earth Syst. Sci., 22, 3391–3407, https://doi.org/10.5194/hess-22-3391-2018, https://doi.org/10.5194/hess-22-3391-2018, 2018
Short summary
Short summary
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high temporal and spatial scales for simulating an extreme sub-daily heavy rainfall (SDHR) event. Both objective verification metrics and subjective verification were used to identify the likely best set of the configurations. Results show that re-evaluation of these WRF settings is of great importance in improving the accuracy and reliability of the rainfall simulations in the regional SDHR applications.
Xiaoxi Gao, Depeng Zuo, Zongxue Xu, Siyang Cai, and Han Xianming
Proc. IAHS, 379, 159–167, https://doi.org/10.5194/piahs-379-159-2018, https://doi.org/10.5194/piahs-379-159-2018, 2018
Short summary
Short summary
The blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability, inter-annual variabilityand spatial distribution of the blue water and green water is relatively similar.
Xianming Han, Depeng Zuo, Zongxue Xu, Siyang Cai, and Xiaoxi Gao
Proc. IAHS, 379, 105–112, https://doi.org/10.5194/piahs-379-105-2018, https://doi.org/10.5194/piahs-379-105-2018, 2018
Short summary
Short summary
To further protect the ecology of the study area, remote sensing image technology is used to analyze the temporal and spatial distribution characteristics of vegetation in the Yarlung Zangbo River Basin by splicing the remote sensing image of a time series (from February 2000 to December 2016). It can be found that vegetation coverage is better in low elevation areas,vegetation change shows a weak sustainability and the vegetation growth is more affected by the temperature than the precipitation.
Siyang Cai, Depeng Zuo, Zongxue Xu, Xianming Han, and Xiaoxi Gao
Proc. IAHS, 379, 73–82, https://doi.org/10.5194/piahs-379-73-2018, https://doi.org/10.5194/piahs-379-73-2018, 2018
Short summary
Short summary
Drought is a natural and recurring feature of climate; occurring in virtually all climatic regimes. Wei River is of great importance in social and economic in China. The temporal and spatial variations of drought in the Wei River basin were investigated by calculating the drought indexes. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature.
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018, https://doi.org/10.5194/piahs-379-463-2018, 2018
Wenchao Sun, Yuanyuan Wang, Guoqiang Wang, Xingqi Cui, Jingshan Yu, Depeng Zuo, and Zongxue Xu
Hydrol. Earth Syst. Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, https://doi.org/10.5194/hess-21-251-2017, 2017
Short summary
Short summary
The possibility of using a short period of streamflow data (less than one year) to calibrate a physically based distributed hydrological model is evaluated. Contrary to the common understanding of using data of several years, it is shown that only using data covering several months could calibrate the model effectively, which indicates that this approach is valuable for solving the calibration problem of such models in data-sparse basins.
Zongxue Xu and Gang Zhao
Proc. IAHS, 373, 7–12, https://doi.org/10.5194/piahs-373-7-2016, https://doi.org/10.5194/piahs-373-7-2016, 2016
Short summary
Short summary
China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flooding risk. In this study, the major purpose is to investigate the impact of land use/cover changes on hydrological processes and the flooding risk in Beijing.
Z. X. Xu, X. J. Yang, D. P. Zuo, Q. Chu, and W. F. Liu
Proc. IAHS, 369, 121–127, https://doi.org/10.5194/piahs-369-121-2015, https://doi.org/10.5194/piahs-369-121-2015, 2015
Short summary
Short summary
Spatiotemporal characteristics of extreme precipitation and temperature in Yunnan Province, China, were analyzed by using observed daily data at 28 meteorological stations from 1959-2013 in this study.Both maximum and minimum temperature showed significant increasing tendency while there was not obvious changes for precipitation.It was noted that extreme precipitation and temperature events occurred more frequently in central region where the risk of extreme climatic events was greater.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Qi Chu, Zongxue Xu, Yiheng Chen, and Dawei Han
Hydrol. Earth Syst. Sci., 22, 3391–3407, https://doi.org/10.5194/hess-22-3391-2018, https://doi.org/10.5194/hess-22-3391-2018, 2018
Short summary
Short summary
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high temporal and spatial scales for simulating an extreme sub-daily heavy rainfall (SDHR) event. Both objective verification metrics and subjective verification were used to identify the likely best set of the configurations. Results show that re-evaluation of these WRF settings is of great importance in improving the accuracy and reliability of the rainfall simulations in the regional SDHR applications.
Xiaoxi Gao, Depeng Zuo, Zongxue Xu, Siyang Cai, and Han Xianming
Proc. IAHS, 379, 159–167, https://doi.org/10.5194/piahs-379-159-2018, https://doi.org/10.5194/piahs-379-159-2018, 2018
Short summary
Short summary
The blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability, inter-annual variabilityand spatial distribution of the blue water and green water is relatively similar.
Xianming Han, Depeng Zuo, Zongxue Xu, Siyang Cai, and Xiaoxi Gao
Proc. IAHS, 379, 105–112, https://doi.org/10.5194/piahs-379-105-2018, https://doi.org/10.5194/piahs-379-105-2018, 2018
Short summary
Short summary
To further protect the ecology of the study area, remote sensing image technology is used to analyze the temporal and spatial distribution characteristics of vegetation in the Yarlung Zangbo River Basin by splicing the remote sensing image of a time series (from February 2000 to December 2016). It can be found that vegetation coverage is better in low elevation areas,vegetation change shows a weak sustainability and the vegetation growth is more affected by the temperature than the precipitation.
Siyang Cai, Depeng Zuo, Zongxue Xu, Xianming Han, and Xiaoxi Gao
Proc. IAHS, 379, 73–82, https://doi.org/10.5194/piahs-379-73-2018, https://doi.org/10.5194/piahs-379-73-2018, 2018
Short summary
Short summary
Drought is a natural and recurring feature of climate; occurring in virtually all climatic regimes. Wei River is of great importance in social and economic in China. The temporal and spatial variations of drought in the Wei River basin were investigated by calculating the drought indexes. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature.
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018, https://doi.org/10.5194/piahs-379-463-2018, 2018
Wenchao Sun, Yuanyuan Wang, Guoqiang Wang, Xingqi Cui, Jingshan Yu, Depeng Zuo, and Zongxue Xu
Hydrol. Earth Syst. Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, https://doi.org/10.5194/hess-21-251-2017, 2017
Short summary
Short summary
The possibility of using a short period of streamflow data (less than one year) to calibrate a physically based distributed hydrological model is evaluated. Contrary to the common understanding of using data of several years, it is shown that only using data covering several months could calibrate the model effectively, which indicates that this approach is valuable for solving the calibration problem of such models in data-sparse basins.
Zongxue Xu and Gang Zhao
Proc. IAHS, 373, 7–12, https://doi.org/10.5194/piahs-373-7-2016, https://doi.org/10.5194/piahs-373-7-2016, 2016
Short summary
Short summary
China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flooding risk. In this study, the major purpose is to investigate the impact of land use/cover changes on hydrological processes and the flooding risk in Beijing.
Z. X. Xu, X. J. Yang, D. P. Zuo, Q. Chu, and W. F. Liu
Proc. IAHS, 369, 121–127, https://doi.org/10.5194/piahs-369-121-2015, https://doi.org/10.5194/piahs-369-121-2015, 2015
Short summary
Short summary
Spatiotemporal characteristics of extreme precipitation and temperature in Yunnan Province, China, were analyzed by using observed daily data at 28 meteorological stations from 1959-2013 in this study.Both maximum and minimum temperature showed significant increasing tendency while there was not obvious changes for precipitation.It was noted that extreme precipitation and temperature events occurred more frequently in central region where the risk of extreme climatic events was greater.
Cited articles
Beard, L. R.: Statistical analysis in hydrology, T. Am. Soc. Civ. Eng., 108, 1110–1121, 1943.
Beijing Statistics Bureau: Beijing Statistical Yearbook 2010, China Statistics Press, Beijing, 2010.
Bonsal, B. R., Zhang, X., Vincent, L. A., and Hogg, W. D.: Characteristics of daily and extreme temperatures over Canada, J. Climate, 14, 1959–1976, 2001.
Chu, Q., Xu, Z. X., Peng, D. Z., Yang, X. J., and Yang, G.: Trends of surface humidity and temperature during 1951–2012 in Beijing, China, in: Proceedings of the 3rd Remote Sensing and Hydrology Symposium, August 2014, Guangzhou, China, in press, 2015.
Folland, C. and Anderson, C.: Estimating changing extremes using empirical ranking methods, J. Climate, 15, 2954–2959, 2002.
He, J. and Yang, K.: China Meteorological Forcing Dataset, Cold and Arid Regions Science Data Center, Lanzhou, https://doi.org/10.3972/westdc.002.2014.db, 2011.
Jenkinson, A. F.: The analysis of meteorological and other geophysical extremes, Synoptic Climatology Branch, Meteorological Office, Bracknell, Berkshire, UK, 44 pp., 1977.
Koteswara, R. K., Patawardhan, S. K., Kulkarni, A., Kamala, K., Sabade, S. S., and Kumar, K. K.: Projected changes in mean and extreme precipitation indices over India using PRECIS, Global Planet. Change, 113, 77–90, 2014.
Li, J. F., Zhang, Q., Chen, Y. Q., and Singh, V. P.: Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards, Global Planet. Change, 124, 107–122, 2015.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeldsen, T. R.: Review of trend analysis and climate change projections of extreme precipitation and floods in Europe, J. Hydrol., 519, 3634–3650, 2014.
Rodell, M., Houser, P. R., Jambor, U., GottschalcK, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Entin, K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, Am. Meteorol. Soc., 3, 381–394, 2004.
You, H. L., Liu, W. D., and Ren, G. Y.: Variation characteristics of precipitation extremes in Beijing during 1981–2010, Clim. Environ. Res., 19, 69–77, 2014.
Short summary
Three hourly assimilated precipitation series with 0.1 deg. are used to analyze the features and trends of extreme precipitation in Beijing, China. The results show that: (1) the local climate and topography are two main factors influencing the spatial distributions of precipitation; (2) areas with greater precipitation threshold may have shorter precipitation days; (3) extreme precipitation amount (48% of precipitation) concentrated on urban areas and mountain area within only 5 to 7 days.
Three hourly assimilated precipitation series with 0.1 deg. are used to analyze the features and...