Articles | Volume 369
https://doi.org/10.5194/piahs-369-87-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-369-87-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evolution of low flows in Czechia revisited
Hydrological Database & Water Balance, Czech Hydrometeorological Institute, Na Sabatce 2050/17, 143 06 Prague 412, Czech Republic
Institute of Applied Mathematics and Information Technologies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
Related authors
Ondrej Ledvinka and Thomas Recknagel
Proc. IAHS, 383, 135–140, https://doi.org/10.5194/piahs-383-135-2020, https://doi.org/10.5194/piahs-383-135-2020, 2020
Short summary
Short summary
Various estimators of the Hurst exponent characterizing long-term persistence exist, while the values estimated by them may differ. The contribution reviews the possible reasons causing the presence of long-term persistence in time series. Based on the six, relatively long discharge time series from mountainous catchments located in the Elbe River basin close to the borders between Czechia and Germany and two selected estimators, it is shown that the length of time series plays a crucial role.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
Ondrej Ledvinka and Thomas Recknagel
Proc. IAHS, 383, 135–140, https://doi.org/10.5194/piahs-383-135-2020, https://doi.org/10.5194/piahs-383-135-2020, 2020
Short summary
Short summary
Various estimators of the Hurst exponent characterizing long-term persistence exist, while the values estimated by them may differ. The contribution reviews the possible reasons causing the presence of long-term persistence in time series. Based on the six, relatively long discharge time series from mountainous catchments located in the Elbe River basin close to the borders between Czechia and Germany and two selected estimators, it is shown that the length of time series plays a crucial role.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
Cited articles
Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294, https://doi.org/10.1016/j.jhydrol.2005.06.039, 2006.
Anderson, R. L.: Distribution of the serial correlation coefficient, Ann. Math. Stat., 13, 1–13, 1942.
Benčoková, A., Krám, P., and Hruška, J.: Future climate and changes in flow patterns in Czech headwater catchments, Clim. Res., 49, 1–15, https://doi.org/10.3354/cr01011, 2011.
Burn, D. H.: Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin, J. Hydrol., 352, 225–238, https://doi.org/10.1016/j.jhydrol.2008.01.019, 2008.
Burn, D. H. and Hag Elnur, M. A.: Detection of hydrologic trends and variability, J. Hydrol., 255, 107–122, https://doi.org/10.1016/S0022-1694(01)00514-5, 2002.
Burn, D. H. and Hesch, N. M.: Trends in evaporation for the Canadian Prairies, J. Hydrol., 336, 61–73, https://doi.org/10.1016/j.jhydrol.2006.12.011, 2007.
Canty, A. and Ripley, B.: boot: Bootstrap R (S-Plus) Functions, R package version 1-3-13, http://cran.at.r-project.org/package=boot (last access: 5 January 2015), 2014.
Chen, Y. D., Zhang, Q., Chen, X., and Wang, P.: Multiscale variability of streamflow changes in the Pearl River basin, China, Stoch. Environ. Res. Risk A., 26, 235–246, https://doi.org/10.1007/s00477-011-0495-3, 2012.
Cohn, T. A. and Lins, H. F.: Nature's style: naturally trendy, Geophys. Res. Lett., 32, L23402, https://doi.org/10.1029/2005GL024476, 2005.
COSMT: Hydrological data on surface water, Czech Office for Standards, Metrology and Testing, Praha, 2014 (in Czech).
Cowpertwait, P. S. P. and Metcalfe, A. V.: Introductory Time Series with R, Springer, Dordrecht, New York, 2009.
Cunderlik, J. M. and Burn, D. H.: Local and regional trends in monthly maximum flows in southern British Columbia, Can. Water Resour. J., 27, 191–212, https://doi.org/10.4296/cwrj2702191, 2002.
Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and Their Applications, Cambridge University Press, New York, 1997.
Douglas, E. M., Vogel, R. M., and Kroll, C. N.: Trends in floods and low flows in the United States: impact of spatial correlation, J. Hydrol., 240, 90–105, https://doi.org/10.1016/S0022-1694(00)00336-X, 2000.
Ehsanzadeh, E. and Adamowski, K.: Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence, Hydrol. Process., 24, 970–980, https://doi.org/10.1002/hyp.7533, 2010.
Ehsanzadeh, E., van der Kamp, G., and Spence, C.: The impact of climatic variability and change in the hydroclimatology of Lake Winnipeg watershed, Hydrol. Process., 26, 2802–2813, https://doi.org/10.1002/hyp.8327, 2012.
Fatichi, S., Barbosa, S. M., Caporali, E., and Silva, M. E.: Deterministic versus stochastic trends: detection and challenges, J. Geophys. Res., 114, D18121, https://doi.org/10.1029/2009JD011960, 2009.
Fiala, T., Ouarda, T. B. M. J., and Hladný, J.: Evolution of low flows in the Czech Republic, J. Hydrol., 393, 206–218, https://doi.org/10.1016/j.jhydrol.2010.08.018, 2010.
Hamed, K. H.: Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis, J. Hydrol., 349, 350–363, https://doi.org/10.1016/j.jhydrol.2007.11.009, 2008.
Hamed, K. H. and Rao, A. R.: A modified Mann–Kendall trend test for autocorrelated data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Hanel, M., Kašpárek, L., Peláková, M., Beran, A., and Vizina, A.: Evaluation of changes in deficit volumes: support for protection of localities suitable for construction of reservoirs, in: Considering Hydrological Change in Reservoir Planning and Management, edited by: Schumann, A., IAHS Press, Wallingford, Oxfordshire, UK, 187–192, 2013.
Hirsch, R. M., Slack, J. R., and Smith, R. A.: Techniques of trend analysis for monthly water quality data, Water Resour. Res., 18, 107–121, https://doi.org/10.1029/WR018i001p00107, 1982.
Hyndman, R. J. and Khandakar, Y.: Automatic time series forecasting: the forecast package for R, J. Stat. Softw., 27, 1–22, 2008.
Kendall, M. G.: A new measure of rank correlation, Biometrika, 30, 81–93, 1938.
Kendall, M. G.: Rank Correlation Methods, 4th Edn., Griffin, London, 1970.
Khaliq, M. N. and Sushama, L.: Analysis of trends in low-flow time series of Canadian rivers, in: Hydrologic Time Series Analysis: Theory and Practice, Springer Netherlands, Dordrecht, 201–221, 2012.
Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., and Sushama, L.: Temporal evolution of low-flow regimes in Canadian rivers, Water Resour. Res., 44, W08436, https://doi.org/10.1029/2007WR006132, 2008.
Khaliq, M. N., Ouarda, T. B. M. J., and Gachon, P.: Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: The effect of short- and long-term persistence, J. Hydrol., 369, 183–197, https://doi.org/10.1016/j.jhydrol.2009.02.045, 2009a.
Khaliq, M. N., Ouarda, T. B. M. J., Gachon, P., Sushama, L., and St-Hilaire, A.: Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers, J. Hydrol., 368, 117–130, https://doi.org/10.1016/j.jhydrol.2009.01.035, 2009b.
Kliment, Z. and Matoušková, M.: Runoff changes in the Šumava Mountains (Black Forest) and the foothill regions: extent of influence by human impact and climate change, Water Resour. Manage., 23, 1813–1834, https://doi.org/10.1007/s11269-008-9353-6, 2009.
Kliment, Z., Matoušková, M., Ledvinka, O., and Královec, V.: Trend analysis of rainfall-runoff regimes in selected headwater areas of the Czech Republic, J. Hydrol. Hydromech., 59, 36–50, https://doi.org/10.2478/v10098-011-0003-y, 2011.
Kulkarni, A. and von Storch, H.: Monte Carlo experiments on the effect of serial correlation on the Mann–Kendall test of trend, Meteorol. Z., 4, 82–85, 1995.
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root, J. Econom., 54, 159–178, https://doi.org/10.1016/0304-4076(92)90104-Y, 1992.
Ledvinka, O.: Scaling of low flows in Czechia, in: HYPER Droughts: Hydrological Precipitation Evaporation Runoff Droughts – Book of Abstracts of the 6th EGU Leonardo Conference, 13–14 November 2014, Prague, Czech Republic, edited by: Vizina, A. and Laaha, G., 111–112, Prague, available at: http://www.eguleonardo2014.com/abstracts/ (last access: 19 January 2015), 2014.
Ledvinka, O.: Scaling of low flows in Czechia – an initial assessment, Proc. Int. Assoc. Hydrol. Sci., 366, 188–189, https://doi.org/10.5194/piahs-366-188-2015, 2015.
Liu, F., Chen, S., Dong, P., and Peng, J.: Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years, J. Geogr. Sci., 22, 1013–1033, https://doi.org/10.1007/s11442-012-0980-8, 2012.
Lorenzo-Lacruz, J., Vicente-Serrano, S. M., López-Moreno, J. I., Morán-Tejeda, E., and Zabalza, J.: Recent trends in Iberian streamflows (1945–2005), J. Hydrol., 414–415, 463–475, https://doi.org/10.1016/j.jhydrol.2011.11.023, 2012.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Matalas, N. C. and Langbein, W. B.: Information content of the mean, J. Geophys. Res., 67, 3441–3448, https://doi.org/10.1029/JZ067i009p03441, 1962.
Matoušková, M., Kliment, Z., Ledvinka, O., and Královec, V.: Application of selected statistical tests to detect changes in the rainfall and runoff regime, Bodenkultur, 62, 95–100, 2011.
Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution to more-intense precipitation extremes, Nature, 470, 378–381, https://doi.org/10.1038/nature09763, 2011.
Novický, O., Mrkvičková, M., and Kašpárek, L.: Implementation of the Water Framework Directive and adaptation strategies in the Czech Republic, in: Global Change: Facing Risks and Threats to Water Resources, edited by: Servat, E., Demuth, S., Dezetter, A., and Daniell, T., IAHS Press, Wallingford, Oxfordshire, UK, 273–278, 2010.
Patton, A., Politis, D. N., and White, H.: Correction to "Automatic block-length selection for the dependent bootstrap" by D. Politis and H. White, Econom. Rev., 28, 372–375, https://doi.org/10.1080/07474930802459016, 2009.
Phillips, P. C. B. and Perron, P.: Testing for a unit root in time series regression, Biometrika, 75, 335–346, https://doi.org/10.1093/biomet/75.2.335, 1988.
Politis, D. N. and White, H.: Automatic block-length selection for the dependent bootstrap, Econom. Rev., 23, 53–70, https://doi.org/10.1081/ETC-120028836, 2004.
Rivard, C., Vigneault, H., Piggott, A. R., Larocque, M., and Anctil, F.: Groundwater recharge trends in Canada, Can. J. Earth Sci., 46, 841–854, https://doi.org/10.1139/E09-056, 2009.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Shifteh Some'e, B., Ezani, A., and Tabari, H.: Spatiotemporal trends and change point of precipitation in Iran, Atmos. Res., 113, 1–12, https://doi.org/10.1016/j.atmosres.2012.04.016, 2012.
Steffens, K. J. and Franz, K. J.: Late 20th-century trends in Iowa watersheds: an investigation of observed and modelled hydrologic storages and fluxes in heavily managed landscapes, Int. J. Climatol., 32, 1373–1391, https://doi.org/10.1002/joc.2361, 2012.
Tabari, H., Abghari, H., and Hosseinzadeh Talaee, P.: Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran, Hydrol. Process., 26, 3351–3361, https://doi.org/10.1002/hyp.8460, 2012.
Vajskebr, V., \vRičicová, P., and Vlnas, R.: Impact of the climate change on water and snow balance in the "Jizerské" Mountains in the Czech Republic, Bodenkultur, 64, 113–119, 2013.
Vlnas, R. and Fiala, T.: Spatial and temporal variability of hydrological drought in the Czech Republic, in: vol. 2, SGEM2010 Conference Proceedings, Varna, Bulgaria, 20–26 June 2010, 59–66, 2010.
von Storch, H.: Misuses of statistical analysis in climate research, in: Analysis of Climate Variability. Applications of Statistical Techniques, edited by: von Storch, H. and Navarra, A., Springer-Verlag, Berlin, 11–26, 1999.
Wagesho, N., Goel, N. K., and Jain, M. K.: Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia, J. Hydrol., 444–445, 113–133, https://doi.org/10.1016/j.jhydrol.2012.04.011, 2012.
Yue, S. and Wang, C. Y.: Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test, Water Resour. Res., 38, 1068, https://doi.org/10.1029/2001WR000861, 2002.
Yue, S. and Wang, C. Y.: The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series, Water Resour. Manage., 18, 201–218, https://doi.org/10.1023/B:WARM.0000043140.61082.60, 2004.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002.
Yue, S., Pilon, P., and Phinney, B.: Canadian streamflow trend detection: impacts of serial and cross-correlation, Hydrolog. Sci. J., 48, 51–63, https://doi.org/10.1623/hysj.48.1.51.43478, 2003.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3716 KB) - Full-text XML
Short summary
Selected series of drought-related characteristics derived from mean daily discharges measured in Czechia were tested for the presence of significant trends. Three modifications of the Mann-Kendall test were employed that account for short-term persistence and long-term persistence. One of them was utilised for the first time in hydrology. Unlike previous studies, the present study highlighted the differences among trend in deficit volumes (decrease in the west and increase in the east).
Selected series of drought-related characteristics derived from mean daily discharges measured...