Articles | Volume 369
https://doi.org/10.5194/piahs-369-75-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/piahs-369-75-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
European drought trends
L. Gudmundsson
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
S. I. Seneviratne
Institute for Atmospheric and Climate Science, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
Related authors
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024, https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Short summary
The simultaneous occurrence of meteorological (precipitation), agricultural (soil moisture), and hydrological (streamflow) drought can lead to augmented impacts. By analysing drought indices derived from the newest climate scenarios for Switzerland (CH2018, Hydro-CH2018), we show that with climate change the concurrence of all drought types will increase in all studied regions of Switzerland. Our results stress the benefits of and need for both mitigation and adaptation measures at early stages.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleußner
EGUsphere, https://doi.org/10.5194/egusphere-2024-278, https://doi.org/10.5194/egusphere-2024-278, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Their joint distribution largely determines the division into climate regimes. Yet, projecting precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows to generate monthly means of local precipitation and temperature at low computational costs.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Gionata Ghiggi, Vincent Humphrey, Sonia I. Seneviratne, and Lukas Gudmundsson
Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, https://doi.org/10.5194/essd-11-1655-2019, 2019
Short summary
Short summary
Freshwater resources are of high societal relevance and understanding their past variability is vital to water management in the context of current and future climatic change. This study introduces GRUN: the first global gridded monthly reconstruction of runoff covering the period from 1902 to 2014. The dataset agrees on average much better with the streamflow observations than an ensemble of 13 state-of-the-art global hydrological models and will foster the understanding of freshwater dynamics.
Inne Vanderkelen, Jakob Zschleischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, and Wim Thiery
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-267, https://doi.org/10.5194/bg-2019-267, 2019
Manuscript not accepted for further review
Vincent Humphrey and Lukas Gudmundsson
Earth Syst. Sci. Data, 11, 1153–1170, https://doi.org/10.5194/essd-11-1153-2019, https://doi.org/10.5194/essd-11-1153-2019, 2019
Short summary
Short summary
Because changes in freshwater availability can impact many natural ecosystems and human activities, it is crucial to better understand long-term changes in the water cycle. This dataset is a reconstruction of past changes in land water storage over the last century, obtained by combining satellite observations with historical weather data. It can be used to investigate both regional changes in freshwater availability or drought frequency and long-term changes in the global water cycle.
Hong Xuan Do, Lukas Gudmundsson, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, https://doi.org/10.5194/essd-10-765-2018, 2018
Short summary
Short summary
The production of 30 959 daily streamflow time series in the Global Streamflow and Metadata Archive (GSIM) project is presented. The paper also describes the development of three metadata products that are freely available. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Lukas Gudmundsson, Hong Xuan Do, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, https://doi.org/10.5194/essd-10-787-2018, 2018
Short summary
Short summary
Time-series indices characterizing streamflow at annual, seasonal and monthly resolution at more than 30 000 stations around the world are presented. The data belong to the Global Streamflow and Metadata Archive (GSIM) and allow for an assessment of water balance components, hydrological extremes and the seasonality of water availability. The quality of the data is tested using automated methods to aid potential users to gauge the suitability of the data for specific applications.
Peter Greve, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 227–240, https://doi.org/10.5194/esd-9-227-2018, https://doi.org/10.5194/esd-9-227-2018, 2018
Short summary
Short summary
Assessing projected hydroclimatological changes is crucial, but associated with large uncertainties. We statistically assess here the response of precipitation and water availability to global temperature change, enabling us to estimate the significance of drying/wetting tendencies under anthropogenic climate change. We further show that opting for a 1.5 K warming target just slightly influences the mean response but could substantially reduce the risk of experiencing extreme changes.
Lukas Gudmundsson and Sonia I. Seneviratne
Earth Syst. Sci. Data, 8, 279–295, https://doi.org/10.5194/essd-8-279-2016, https://doi.org/10.5194/essd-8-279-2016, 2016
Short summary
Short summary
Despite the scientific and societal relevance of freshwater, there are to date no observation-based pan-European runoff estimates available. Here we employ state-of-the-art techniques to estimate monthly runoff rates in Europe. The new data product is based on an unprecedented collection of river flow observations which are combined with atmospheric variables using machine learning. Potential applications of the presented product include climatological assessments and drought monitoring.
Peter Greve, Lukas Gudmundsson, Boris Orlowsky, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 20, 2195–2205, https://doi.org/10.5194/hess-20-2195-2016, https://doi.org/10.5194/hess-20-2195-2016, 2016
Short summary
Short summary
The widely used Budyko framework is by definition limited to steady-state conditions. In this study we analytically derive a new, two-parameter formulation of the Budyko framework that represents conditions under which evapotranspiration exceeds precipitation. This is technically achieved by rotating the water supply limit within the Budyko space. The new formulation is shown to be capable to represent first-order seasonal dynamics within the hydroclimatological system.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, https://doi.org/10.5194/hess-19-2859-2015, 2015
Short summary
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-13191-2013, https://doi.org/10.5194/hessd-10-13191-2013, 2013
Manuscript not accepted for further review
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024, https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Short summary
The simultaneous occurrence of meteorological (precipitation), agricultural (soil moisture), and hydrological (streamflow) drought can lead to augmented impacts. By analysing drought indices derived from the newest climate scenarios for Switzerland (CH2018, Hydro-CH2018), we show that with climate change the concurrence of all drought types will increase in all studied regions of Switzerland. Our results stress the benefits of and need for both mitigation and adaptation measures at early stages.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleußner
EGUsphere, https://doi.org/10.5194/egusphere-2024-278, https://doi.org/10.5194/egusphere-2024-278, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Their joint distribution largely determines the division into climate regimes. Yet, projecting precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows to generate monthly means of local precipitation and temperature at low computational costs.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023, https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Short summary
Climate models are powerful tools, but they have high computational costs, hindering their use in exploring future climate extremes. We demonstrate MESMER-X, the only existing emulator for spatial climate extremes (heatwaves, fires, droughts) that mimics all of their relevant properties. Thanks to its negligible computational cost, MESMER-X may greatly accelerate the exploration of future climate extremes or enable the integration of climate extremes in economic and financial models.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020, https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
Short summary
Earth system models (ESMs) are invaluable to study the climate system but expensive to run. Here, we present a statistical tool which emulates ESMs at a negligible computational cost by creating stochastic realizations of yearly land temperature field time series. Thereby, 40 ESMs are considered, and for each ESM, a single simulation is required to train the tool. The resulting ESM-specific realizations closely resemble ESM simulations not employed during training at point to regional scales.
Gionata Ghiggi, Vincent Humphrey, Sonia I. Seneviratne, and Lukas Gudmundsson
Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, https://doi.org/10.5194/essd-11-1655-2019, 2019
Short summary
Short summary
Freshwater resources are of high societal relevance and understanding their past variability is vital to water management in the context of current and future climatic change. This study introduces GRUN: the first global gridded monthly reconstruction of runoff covering the period from 1902 to 2014. The dataset agrees on average much better with the streamflow observations than an ensemble of 13 state-of-the-art global hydrological models and will foster the understanding of freshwater dynamics.
Inne Vanderkelen, Jakob Zschleischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, and Wim Thiery
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-267, https://doi.org/10.5194/bg-2019-267, 2019
Manuscript not accepted for further review
Vincent Humphrey and Lukas Gudmundsson
Earth Syst. Sci. Data, 11, 1153–1170, https://doi.org/10.5194/essd-11-1153-2019, https://doi.org/10.5194/essd-11-1153-2019, 2019
Short summary
Short summary
Because changes in freshwater availability can impact many natural ecosystems and human activities, it is crucial to better understand long-term changes in the water cycle. This dataset is a reconstruction of past changes in land water storage over the last century, obtained by combining satellite observations with historical weather data. It can be used to investigate both regional changes in freshwater availability or drought frequency and long-term changes in the global water cycle.
Hong Xuan Do, Lukas Gudmundsson, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, https://doi.org/10.5194/essd-10-765-2018, 2018
Short summary
Short summary
The production of 30 959 daily streamflow time series in the Global Streamflow and Metadata Archive (GSIM) project is presented. The paper also describes the development of three metadata products that are freely available. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Lukas Gudmundsson, Hong Xuan Do, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, https://doi.org/10.5194/essd-10-787-2018, 2018
Short summary
Short summary
Time-series indices characterizing streamflow at annual, seasonal and monthly resolution at more than 30 000 stations around the world are presented. The data belong to the Global Streamflow and Metadata Archive (GSIM) and allow for an assessment of water balance components, hydrological extremes and the seasonality of water availability. The quality of the data is tested using automated methods to aid potential users to gauge the suitability of the data for specific applications.
Peter Greve, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 227–240, https://doi.org/10.5194/esd-9-227-2018, https://doi.org/10.5194/esd-9-227-2018, 2018
Short summary
Short summary
Assessing projected hydroclimatological changes is crucial, but associated with large uncertainties. We statistically assess here the response of precipitation and water availability to global temperature change, enabling us to estimate the significance of drying/wetting tendencies under anthropogenic climate change. We further show that opting for a 1.5 K warming target just slightly influences the mean response but could substantially reduce the risk of experiencing extreme changes.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Lukas Gudmundsson and Sonia I. Seneviratne
Earth Syst. Sci. Data, 8, 279–295, https://doi.org/10.5194/essd-8-279-2016, https://doi.org/10.5194/essd-8-279-2016, 2016
Short summary
Short summary
Despite the scientific and societal relevance of freshwater, there are to date no observation-based pan-European runoff estimates available. Here we employ state-of-the-art techniques to estimate monthly runoff rates in Europe. The new data product is based on an unprecedented collection of river flow observations which are combined with atmospheric variables using machine learning. Potential applications of the presented product include climatological assessments and drought monitoring.
Peter Greve, Lukas Gudmundsson, Boris Orlowsky, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 20, 2195–2205, https://doi.org/10.5194/hess-20-2195-2016, https://doi.org/10.5194/hess-20-2195-2016, 2016
Short summary
Short summary
The widely used Budyko framework is by definition limited to steady-state conditions. In this study we analytically derive a new, two-parameter formulation of the Budyko framework that represents conditions under which evapotranspiration exceeds precipitation. This is technically achieved by rotating the water supply limit within the Budyko space. The new formulation is shown to be capable to represent first-order seasonal dynamics within the hydroclimatological system.
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
Short summary
The WACMOS-ET project aims to advance the development of land evaporation estimates on global and regional scales. Evaluation of current evaporation data sets on the global scale showed that they manifest large dissimilarities during conditions of water stress and drought and deficiencies in the way evaporation is partitioned into several components. Different models perform better under different conditions, highlighting the potential for considering biome- or climate-specific model ensembles.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 19, 2859–2879, https://doi.org/10.5194/hess-19-2859-2015, https://doi.org/10.5194/hess-19-2859-2015, 2015
Short summary
Short summary
Water storages and fluxes on land are key variables in the Earth system. To provide context for local investigations and to understand phenomena that emerge at large spatial scales, information on continental freshwater dynamics is needed. This paper presents a methodology to estimate continental-scale runoff on a 0.5° spatial grid, which combines the advantages of in situ observations with the power of machine learning regression. The resulting runoff estimates compare well with observations.
L. Gudmundsson and S. I. Seneviratne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-13191-2013, https://doi.org/10.5194/hessd-10-13191-2013, 2013
Manuscript not accepted for further review
Cited articles
Blauhut, V., Gudmundsson, L., and Stahl, K. Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts, Environ. Res. Lett., 10, 014008, https://doi.org/10.1088/1748-9326/10/1/014008, 2015.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc., 57, 289–300, 1995.
Bhend, J. and von Storch, H.: Consistency of observed winter precipitation trends in northern Europe with regional climate change projections, Clim. Dynamics, 31, 17–28, https://doi.org/10.1007/s00382-007-0335-9, 2008.
Bordi, I., Fraedrich, K., and Sutera, A.: Observed drought and wetness trends in Europe: an update, Hydrol. Earth Syst. Sci., 13, 1519–1530, https://doi.org/10.5194/hess-13-1519-2009, 2009.
Gudmundsson, L. and Stagge, J. H.: SCI: Standardized Climate Indices such as SPI, SRI or SPEIR, package version 1.0-1., available at: http://cran.r-project.org/web/packages/SCI/citation.html (last access: 22 April 2015), 2014
Gudmundsson, L., v. Loon, A. F., Tallaksen, L. M., Seneviratne, S. I., Stagge, J. H., Stahl, K., and van Lanen, H. A.: Guidelines for Monitoring and Early Warning of Drought in Europe, DROUGHT-R&SP Technical Report No 21, available at: www.eu-drought.org, 2014.
Gudmundsson, L., Rego, F. C., Rocha, M., and Seneviratne, S. I.: Predicting above normal wildfire activity in southern Europe as a function of meteorological drought, Environ. Res.h Lett., 9, 084008, https://doi.org/10.1088/1748-9326/9/8/084008, 2014.
Gudmundsson, L. and Seneviratne, S.: A comprehensive drought climatology for Europe (1950–2013) Drought: Research and Science-Policy Interfacing, CRC Press, 31–37, https://doi.org/10.1201/b18077-7, 2015.
Hayes, M., Svoboda, M., Wall, N., and Widhalm, M.: The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended, B. Am. Meteorol. Soc., 92, 485–488, 2010.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D. and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Klein Tank, A. M. G. and Können, G. P.: Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99, J. Climate, 16, 3665–3680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2, 2003.
Klein Tank, A. M., Zwiers, F. W., and Zhang, X.: Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation, World Meteorological Organization, World Climate Data and Monitoring Programme (WCDMP) series No 72, 2009.
McKee, T., Doesken, N., and Kleist, J.: The relationship of drought frequency and duration to time scales, 8th Conference on Applied Climatology, 179–184, 17–22 January 1993, Anaheim, California, 1993.
Orlowsky, B. and Seneviratne, S. I.: Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections, Hydrol. Earth Syst. Sci., 17, 1765–1781, https://doi.org/10.5194/hess-17-1765-2013, 2013.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C. and Zhang, X. Field, C., Barros, V., Stocker, T., Q in, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P. (Eds.): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation Changes in climate extremes and their impacts on the natural physical environment, Cambridge University Press, Cambridge, 109–230, 2012.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), Int. J. Climatol., https://doi.org/10.1002/joc.4267, in press, 2015.
Theil, H.: A rank-invariant method of linear and polynomial regression analysis. I, II, III, P. Roy. Netherlands Acad. Sci., 53, 386–392, 521–525, 1397–1412, 1950.
Ventura, V., Paciorek, C. J., and Risbey, J. S.: Controlling the Proportion of Falsely Rejected Hypotheses when Conducting Multiple Tests with Climatological Data, J. Climate, 17, 4343–4356, https://doi.org/10.1175/3199.1, 2004.
Wilks, D. S.: On "Field Significance" and the False Discovery Rate, J. Appl. Meteorol. Climatol., 45, 1181–1189, https://doi.org/10.1175/JAM2404.1, 2006.
Yue, S. and Wang, C.: The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series, Water Resour. Manage., 18, 201–218, https://doi.org/10.1023/B:WARM.0000043140.61082.60, 2004.
Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A., and Nozawa, T.: Detection of human influence on twentieth-century precipitation trends, Nature, 448, 461–465, https://doi.org/10.1038/nature06025, 2007.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2209 KB) - Full-text XML
Short summary
Recent climate projections suggest changes in European drought frequency, indicating increased drought risk in the south and less droughts in the north. Here we show that a similar change pattern can be identified in the observed record. The results raise the question whether observed changes in European drought frequency are a consequence of anthropogenic climate change.
Recent climate projections suggest changes in European drought frequency, indicating increased...