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Abstract. The development and integration of the spatial and temporal probabilities of landslides are required
for complete landslide hazard mapping at any location. Under changing climate, the computation of the temporal
probability of landslides with rainfall magnitude alone is inaccurate. This research proposes a framework based
on copula functions to develop a landslide probability map using multi-site rainfall data by accounting for the
rainfall variables of intensity and duration using a joint-probability approach. The proposed technique is used for
Wayanad District, Kerala, India, considering extreme rainfall events in 2018. Firstly, the landslide susceptibility
map of the district was developed using a robust random forest (RF) model. Based on regional geology, geo-
morphology, and climate, different regions of Wayanad have varying rainfall thresholds assessed according to
the intensity and duration of the rainfall. Then, the temporal probability of landslides was developed, accounting
for the intensity and duration of rainfall events using the joint-probability estimation using copula. Through the
integration of the landslide spatial probability map with the temporal probability, landslide hazard maps (LHMs)
for Wayanad were developed for time periods ranging from 1 to 50 years. The results of the study indicate the
need for bi- or multi-variate landslide probability modeling in studies on regional landslide hazard assessments.

1 Introduction lithology, and fault in the prediction of regional landslides

has only been examined in a few studies. Regional landslide

Landslides, defined as the downward movement of rock, de-
bris, or earth as induced by gravity, have had a profound
impact on property and human life. Landslides can be in-
duced by a variety of external factors, including heavy rain-
fall, earthquakes, changes in water level, storm waves, or hu-
man activity, with rainfall being the most common and most
major triggering element. Landslide threats are anticipated
to increase globally as weather extremes intensify (Crozier,
2010). Landslides have become a common monsoon disas-
ter in Kerala’s Western Ghats region in recent years (Ajin et
al., 2022; Hao et al., 2020). The distinct physiography and
climate of the Western Ghats region are considered to be
responsible for the catastrophic landslides that occur along
their windward slope during periods of intense rainfall (Achu
et al., 2021). The coupling influence of rainfall processes
and environmental parameters such as topography, landform,

hazards have been assessed using probability models. In gen-
eral, a univariate approach has been employed to examine
the impact of climatological variables on landslides. Climate
variables are highly correlated, and univariate analysis can-
not capture the complex and latent characteristics of clima-
tological events. Thus, multivariate analysis is required to
describe the structure of variable dependence. Copula func-
tions enable a multivariate approach in which the dependence
structure among random variables is determined irrespective
of the marginal distributions.

The main focus of this research is to develop a land-
slide hazard map for Wayanad District of Kerala, India, us-
ing copula functions. The copula functions offer a multivari-
ate approach in this study, where rainfall duration and in-
tensity can be evaluated. The specific objectives are (i) to
determine the intensity—duration (ID) relationship between
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Figure 1. Location and digital elevation model of Wayanad.
landslide occurrence and rainfall, (ii) to prepare the land- 76°00°E 76°200°E
slide susceptibility map of Wayanad District of Kerala us-
ing the machine learning technique of random forests, (iii) to
determine the temporal probability of landslides considering 12°0'0"N L12°00"N
multi-site rainfall information using the copula function, and
(iv) to prepare the hazard map by integrating the spatial and
the temporal probability of landslides.
2 Data and study area
11°40°'0"" N+ 11°40'0"N
The research was carried out in Wayanad District (Fig. 1) of
Kerala, India, which is located in the northeastern part of the
state (11-12°N, 75.5-76.25° E). The study region has a total
area of 2132 km?, of which 885.92 km? is covered by forest.
It is located between 700 and 2300 m a.m.s.l. (above mean P + Landslide Locations R
sea level). A Rain Gauge Stations »
The average annual precipitation in the region is 2322 mm. “—'sireamnetwork S
The landslide inventory (Fig. 2) of Wayanad was created

for the years 2007 to 2018 using data from the Geologi-
cal Survey of India’s Bhukosh (https://gsi.gov.in, last access:
5 June 2023).
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Figure 2. Stream network of Wayanad overlaid by landslide inven-
tory and rain gauge locations.
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The study area has been divided into four zones (Fig. 2)
based on the proximity to rain gauge stations in order to ac-
count for the varying properties of rainfall belonging to the
different regions of Wayanad. The rainfall data for the study
were obtained from IMD (India Meteorological Department,
https://imdpune.gov.in, last access: 5 June 2023), specifi-
cally gridded data of 0.25° x 0.25° resolution from 1991
to 2021 at a daily scale. The data were retrieved for four
rain gauge stations (Fig. 2): Mananthavady (11.8°, 76.02°),
Vythiri (11.5°, 76.03°), Ambalavayal (11.62°, 76.2°), and
Kuppady (11.68°, 76.27°).

3 Methodology

This research suggests a copula-based approach that takes
the duration and intensity from multi-site rainfall data into
account while creating the landslide probability map.

The landslide probability map was prepared by integrat-
ing the landslide susceptibility and the temporal probability
of the landslide. The susceptibility map was created utiliz-
ing the conditioning factors, which included topographical,
hydrological, geological, and land use or land cover maps,
as well as the landslide inventory map. The joint-probability
approach of copula functions was used to obtain the tempo-
ral probability of a landslide by calculating the exceedance
probability of rainfall parameters, such as intensity and du-
ration, which are considered to be triggering factors of land-
slide occurrence in the study area. The overall methodology
is depicted in Fig. 3.

The rainfall data were collected on a daily basis for differ-
ent regions of Wayanad. The data were used to determine the
rainfall threshold by cross-referencing it with the landslide
inventory data from the period of 2007-2018. The empirical
rainfall threshold using a power law was calculated using the
relationship between rainfall intensity and duration, as well
as the landslide events. This was expressed by the following
formula:

I =aDP, (1)

where « and 8 are the intercept and slope parameters, respec-
tively (Segoni et al., 2018; Berti et al., 2020). The rainfall
thresholds in Wayanad varied depending on the local, geo-
logical, geomorphological, and climatic conditions.

In order to determine the temporal probability of land-
slides, the rainfall parameter, such as intensity, was acquired
by disaggregating the annual maximum rainfall into dura-
tions of 3, 5, 7, 15, and 30d. For this study, we used rainfall
data spanning 31 years (1991-2021) to determine the tempo-
ral probability of landslides.

The rainfall variables of intensity (/) and duration (D)
are modeled using the log-normal distributions and gamma
distributions. The parameters were determined using the
maximum-likelihood method. The multivariate probability
distribution was joined with the univariate marginal distri-
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Figure 3. Flowchart showing the overall methodology.

bution functions using the Frank copula, which belongs to
the Archimedean family of copulas, C:

o)

(e =)

1
C(u,v)= —gln |:1 +

where u and v are marginal distribution functions of inten-
sity and duration, and 6 is the Frank copula parameter. The
maximum-likelihood estimation (MLE) approach was also
used to estimate the parameters of the copula functions. The
dependencies among the rainfall parameters of intensity and
duration were determined in terms of Kendall’s tau, 7, the
correlation coefficient.

The joint exceedance probabilities of rainfall intensity and
duration were determined by the theory of the return pe-
riod (T) using the copula functions. The return period can be
defined using the copula theory according to the event for X
given Y > y or the event for Y given X > x; these are known
as the conditional return period for X given Y > y and the
conditional return period for ¥ given X > x and are calcu-
lated as follows (Shiau et al., 2006; Bezak et al., 2016; Haile,
2022):
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Figure 4. Rainfall threshold obtained at (a) Mananthavady, (b) Vythiri, (¢) Ambalavayal, and (d) Kuppady.
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3

Txjyzy =

Ty x>x = 4
where T is the return period, and F'(x) and F(y) are cumula-
tive distributions (CDFs) of marginal distributions.

Using the exceedance conditional probability p, the bivari-
ate risk during a period of N years, Pr (N), can be determined
as follows (Pabaghi et al., 2023):

Pr(N)=1-(1-p)". ©)

Thus, the temporal probability of landslides over N years can
be determined using Eq. (5).

The identification of topographical, geological, environ-
mental, and anthropogenic factors that influence the occur-
rence of landslides in the study area is an important step
in landslide hazard mapping. Thus, the following condition-
ing factors were used in the landslide susceptibility anal-
ysis: slope, aspect, curvature, elevation, stream power in-
dex (SPI), topographic wetness index (TWI), land use and
land cover (LULC), geology, and normalized difference veg-
etation index (NDVI). The factor maps were created with
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a 30m x 30m resolution SRTM (Shuttle Radar Topogra-
phy Mission) digital elevation model. The random forest
machine learning technique was used for feature selection
and landslide susceptibility mapping. The receiver operat-
ing characteristic (ROC) curve and the area under the ROC
curve (AUC) were used to validate predictions. The land-
slide hazard maps (LHMs) for different time periods were
then created by integrating the landslide susceptibility map
(LSM) with the temporal probability of landslide (Lee et al.,
2020; Kim et al., 2020).

4 Results and discussion

The hazard mapping under the estimated rainfall threshold
was done by integrating the landslide susceptibility mapping
and the temporal probability of a landslide occurrence ob-
tained by the copula function.

4.1 Rainfall threshold

The rainfall intensity—duration thresholds (Fig. 4) ob-
tained at Mananthavady, Vythiri, Ambalavayal, and Kup-
pady are 19.08D~%223, 86.01D~9334, 18.24D~015 and
25.47D 9281 respectively, where D is the duration in days.
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Table 1. Copula fitting and parameters.

Station Copula Parameter Kendall’s

T
Mananthavady  Frank —12.5 -0.72
Vythiri Frank —9.8 —0.66
Ambalavayal Frank —6.34 —0.531
Kuppady Frank —8.65 —0.625
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Figure 5. Contour plot of joint PDF of Mananthavady region.

The rainfall threshold values obtained in this study are com-
parable to those obtained in Wayanad in a previous study
by Abraham et al. (2020). The rainfall threshold obtained at
Vythiri could be validated with the landslide occurrence on
8 August 2019, which happened with a daily rainfall amount
of 192.22 mm and a 3 d rainfall intensity of 81.6mmd~".

4.2 Temporal probability assessment of landslides

Using the copula functions, the combined conditional ex-
ceedance probability of rainfall intensity and duration is used
to calculate the temporal probability of landslides. Table 1
shows the parameters and correlation coefficient that were
determined for the Frank copula.

The joint probability distribution function (PDF) (Fig. 5)
demonstrates zero tail dependency, indicating that the vari-
ables are asymptotically independent of their tails. The neg-
ative value of Kendall’s r shows that the rainfall variables of
intensity and duration are negatively dependent (Zhang and
Singh, 2012). The combined cumulative distribution func-
tion (CDF) in the copula similarly indicates that the two fac-
tors are negatively reliant on each other (Fig. 6).

The temporal probability of landslides (Table 2) over
N years was calculated using joint conditional exceedance
probability values. The conditional probability values show
that, as the duration increases, the probability value de-
creases.
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Figure 6. Contour plot of joint CDF of Mananthavady region.
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Figure 7. Landslide susceptibility map of Wayanad.
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Figure 9. Landslide hazard maps for different periods of time: (a) 1 year, (b) 2 years, (c) 5 years, (d) 10 years, (e) 20 years, and (f) 50 years.

Table 2. Temporal probability of landslides over N years.

Location Time period (years)

1 2 5 10 20 50

Mananthavady 0.49 0.74 097 1.00 1.00 1.00

Vythiri 054 079 098 1.00 1.00 1.00
Ambalavayal 058 0.83 099 1.00 1.00 1.00
Kuppady 0.18 032 062 086 098 1.00

Thus, the maximum exceedance value was observed for a
3d period in the Mananthavady, Vythiri, Ambalavayal, and
Kuppady regions. Equation (5) was then used to calculate the
temporal probability for each region of Wayanad over vari-
ous time periods.

4.3 Landslide susceptibility mapping

The map indicating the likelihood of landslides occurring
(Fig. 7) was made by taking into account various factors that
contribute to landslides. To confirm the accuracy of this map,
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the ROC curve was used. The LSM created using the random
forest had an AUC value of 0.84, indicating a more accurate
prediction, as shown in Fig. 8.

The feature selection shows that slope has the greater influ-
ence on landslide susceptibility, followed by SPI, TWI, and
NDVI. The feature relevance of SPI and TWI demonstrates
the indirect influence of rainfall on these parameters. The SPI
shows the erosion power of water, whereas the TWI reflects
soil saturation (Riihiméki et al., 2021; Mandal et al., 2021).
The NDVI has an impact on the stream power index as well.

4.4 Landslide hazard mapping

The landslide hazard maps were prepared by integrating the
temporal probability of landslides with the landslide suscep-
tibility. The exceedance probability of each region was ob-
tained as the temporal probability using the copula func-
tion, and then it was multiplied by the landslide suscepti-
bility map to obtain the LHM (Fig. 9), showing the land-
slide hazard proneness calculated for time periods of 1, 2,
5, 10, 20, and 50 years. According to the hazard assess-
ment, during a period of 1 to 2 years, the landslide haz-
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S. Dilama Shamsudeen and A. Sankaran: Landslide hazard mapping of Wayanad District of Kerala, India 85

ard proneness was in the low and medium range of 70 %-—
80 % and 10 %—20 %, respectively. Over the period of 5 to
10 years, 30 %—40 % of the area is at medium hazard and
50 %—-60 % is at moderate hazard. The area that is at high
hazard proneness rises to 20 %—30 % after 10 years. The
validity of the hazard map is proven when compared with
the landslide occurrence on 3 July 2022 in the Vythiri re-
gion of Wayanad (https://www.manoramaonline.com/, last
access: 29 June 2023). The results show that the landslide
occurred in the area that was identified to be more hazard-
prone, as predicted by the map. This confirms the importance
of using such maps in preventing natural disasters and pro-
tecting lives and property.

5 Conclusions

The research discusses the use of a joint-probability approach
to determine the temporal probability of landslides based on
the intensity and duration of rainfall, the triggering factors.
To determine the temporal probability, an empirical rainfall
threshold was computed based on previous landslide occur-
rences. The research found that different regions of Wayanad
such as Mananthavady, Vythiri, Ambalavayal, and Kuppady
had varying rainfall intensities that could trigger landslides,
including 19.08, 86.01, 18.24, and 25.47 mmd—!, respec-
tively. The copula functions were used to obtain the tem-
poral probability of landslides as the joint conditional ex-
ceedance probability of rainfall variables such as intensity
and duration. The exceedance probability values obtained
showed that, as the duration increased, the probability value
decreased. Landslide hazard maps for different periods were
prepared by integrating the landslide susceptibility and the
temporal probability of landslides. The variation in the haz-
ard proneness of different regions of Wayanad demonstrated
the spatial relevance of multi-site rainfall information. The
study concluded that the copula approach could analyze the
combined effect of variables, thus reducing the impacts of
natural hazards such as landslides.
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