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Abstract. We have seen a surge in glacio-hydrological modeling efforts in the past few decades. This form of
modeling is also being carried out in the Himalayan river basins, but a comprehensive high-resolution simulation
software that can be effective with a limited number of hydrometeorological data is recommended. In this regard,
an open-source, scalable, flexible, and distributed modeling system called PyGDM has been developed by fully
coupling the Glacio-hydrological Degree-day Model with PCRaster Python software. To evaluate the potential
of using this model in the Himalayan river basins, we calibrated and then validated the model for Trishuli River
basin using geographical data and the existing hydrometeorological data. The tests showed a promising result
with respect to the effective application of the model in the entire Himalayan region. The PyGDM source code
was optimized and adapted to the process models of glacier melting and hydrological processes in Himalayan
basins. It increased the speed of the simulation, made the model highly scalable to accommodate new submodels,
and enhanced the flexibility of the model to ingest various types of input data and parameters. Hence, the PyGDM
model strives to simulate the glacio-hydrological processes of the entire Himalayan region.

1 Introduction

Modeling glacio-hydrological processes started with differ-
ent modeling approaches (e.g., Buch et al., 1993; Kayastha
et al., 1999) and has gained momentum, with hundreds of
studies in Asia and other parts of the world focusing on
glacial melting process and the related calibration and val-
idation processes of modeling. (see the review in van Tiel
et al., 2020; Y. Chen et al., 2017).

There are mainly stochastic, conceptual, and physics-
based models used in semi-distributed and distributed modes
(Hock and Jansson, 2006). We see some novel use of artifi-
cial neural network (ANN; Buch et al., 1993) machine learn-
ing techniques, such as long short-term memory (LSTM)
and extreme gradient boosting (XGBoost) (Ji et al., 2021)
in Central Asia and gated recurrent units (GRUs) integrated

with the revised version of the Soil and Water Assessment
Tool (SWAT+) that considers glacial hydrological processes
(GSWAT+; Yang et al., 2023). Nevertheless, the ease of
model development and the need for only a few types of data
have given us more conceptual and semi-distributed models.

To give just a few examples of the variety of glacio-
hydrological models that have been developed for various
river basins around the world, the variable infiltration ca-
pacity glacier (VIC-glacier) model was used in the Eastern
Pamirs (Ren et al., 2018) and China (Zhao et al., 2013);
an energy-balance model (Zhang et al., 2016), the Cou-
pled Routing and Excess Storage (CREST-glacier) model
(X. Chen et al., 2017), a tracer-aided hydrological model
(Nan et al., 2022), and the SWAT+ degree-day model were
employed on the Tibetan Plateau (Adnan et al., 2019); the
SWAT+ degree-day model (Rahman et al., 2013) and the
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HBV-light model (Finger et al., 2015) were used in Switzer-
land; the PRMSglacier model was employed in Alaska
(Van Beusekom and Viger, 2016, 2018); glacier melt models
were used in the Andes (Kinouchi et al., 2013), Northwestern
China (Ji and Luo, 2013), and the Upper Indus Basin (Baig
et al., 2021); and the WRF-Hydro/Glacier model was em-
ployed in southern central Norway (Eidhammer et al., 2021).

The Himalayan region has also required its own set of
modeling efforts (Azam et al., 2021). This has involved a
mix of different modeling approaches, such as ANN mod-
els (Buch et al., 1993), the wasm overflow detector (WAS-
MOD) model with precipitation from the Weather Research
and Forecasting (WRF) model in the Beas River basin (Li
et al., 2019), the VIC-glacier model in five river basins
(Chandel and Ghosh, 2021), the coupled VIC–glacier melt
(GM2) model (VIC-GM2) in the Tarim River (Wang et al.,
2021), an energy-balance-based distributed glacier model in
the Hunza River basin (Shrestha et al., 2015), a snow and
glacier melt model in the Upper Indus Basin (Gupta et al.,
2021), the SWAT model in the Western Himalayas (Shukla
et al., 2021) and Hunza (Garee et al., 2017), a distributed
hydrological model in the Western Himalayas (Wulf et al.,
2016), and the snowmelt model (SNOWMOD) for the Gan-
gotri Glacier (Arora et al., 2016).

In Nepalese Himalayan river basins, an integrated hydro-
glaciological modeling system is proposed so that a common
platform is available. This system has the advantage of a dis-
tributed model but only requires a few input data and pa-
rameters. This paper describes the development and testing
of this model that integrates the Glacio-hydrological Degree-
day Model (GDM; Kayastha et al., 2020) with PCRaster.

2 Model development

There is the need for a distributed modeling approach that
is simple yet powerful and flexible to handle the vast num-
ber of spatial and temporal data generated. We chose PCRas-
ter Python as the data processing and simulation software,
as it has been successfully used in other modeling frame-
works such as the Spatial Processes in Hydrology (SPHY)
model (Terink et al., 2015), the PCRaster Global Water Bal-
ance 2 (PCR-GLOBWB 2) model (Sutanudjaja et al., 2017;
Wiersma et al., 2022), and other similar hydrological models
(Karssenberg et al., 2015; López et al., 2019).

We developed the PCRaster Python Glacio-hydrological
Degree-day Model (PyGDM) by coupling the PCRaster
Python framework for spatial dynamic modeling (Karssen-
berg et al., 2010) with the Glacio-hydrological Degree-day
Model (originally developed in Fortran and then in C#)
(Kayastha et al., 2005, 2020).

Our PyGDM model is a spatially distributed and parsi-
monious glacio-hydrological model especially designed for
application in Himalayan river basins. The simplicity of the
GDM is coupled with the power and ease of the dynamic

modeling of PCRaster by embedding the GDM code into the
initial and dynamic sections of the PCRaster script.

2.1 Modeling framework

The modeling method is shown in Fig. 1. Kayastha et al.
(2003) proposed positive degree-day factors for the Hi-
malayan river basins, and this method has become a sim-
ple and convenient approach to simulate glacierized basin
discharge in the Himalayan basins (e.g., Pradhananga et al.,
2014; Silwal et al., 2016; Kayastha et al., 2020).

Precipitation is calculated as rain or snow according the
threshold temperature (Eq. 1):

Precipitation=

{
rain T ≥ TT

snow T < TT,
(1)

where T is temperature and TT is the critical/threshold tem-
perature.

The snowmelt and ice melt value, M (mm d−1), is calcu-
lated using degree-day factors for snow, bare ice, and debris-
covered ice:

M =

{
Kd or Ks or Kb× T T > 0

0 T ≤ 0,
(2)

where T is air temperature (°C), Ks is the degree-day factor
for snow (mm °C d−1), Kb is the degree-day factor for bare
ice (mm °C d−1), and Kd is the degree-day factor for debris-
covered ice (mm °C d−1).

The Hargreaves method is a very simple empirical method
for estimating potential evapotranspiration (PET) based on
temperature data. The advantage of using this method is that
we need only temperature data as input; this enables us to
generalize the method for the entire Nepalese domain. The
Hargreaves method estimates PET based on Eq. (3):

PET= 0.0023 (Tmean+ 17.8) Ra 0.0408
√
Tmax− Tmin, (3)

where PET is potential evapotranspiration (mm d−1); Tmean
is average daily temperature (°C); Tmax is maximum daily
temperature (°C); Tmin is minimum daily temperature (°C);
and Ra is extraterrestrial radiation (MJ m2 d−1), which can
be calculated based on location, date, and time using estab-
lished formulas.

The Hargreaves method is also easy to use due to its de-
pendence on only temperature and radiation, although we
may consider other variables such as humidity and wind in
future versions of the model. A simple interception model
was used with monthly threshold values provided in the
model.

The two-reservoir-based modeling approach of SWAT
(Luo et al., 2012) is adopted to simulate the hydrological
response of the baseflow and rainfall runoff contribution to
river discharge. Then, the discharge due to rainfall and snow-
fall are calculated with the use of runoff coefficients, and the
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Figure 1. PyGDM modeling framework. The abbreviations used in the figure are as follows: GCM – global circulation model; RCM –
regional climate model; and SSP – Shared Socioeconomic Pathway.

daily accumulated amount of water flowing through the river
basin is simulated using the partial contribution from the
past-day discharge (Eqs. 4, 5). The details of the discharge
simulation are explained in more precisely in Kayastha et al.
(2020).

We decided to utilize the static and dynamic modeling ca-
pabilities of PCRaster software to simulate the hydrological
response of the Himalayan river basins. PCRaster is a highly
capable environmental modeling software with a Python ver-
sion that is open-source and free. The deterministic modeling
required for the distributed hydrological modeling starts with
the static modeling framework, as summarized by Eq. (6). In
Eq. (6), Z is the model state variable, I represents the inputs,
P represents the parameters, and f defines the model struc-
ture. In the dynamic modeling section of the PCRaster script,
a time component is added in the static model. In the dy-
namic modeling framework, there are several sections such
as the “initial” section, the “dynamic” section, the dynamic
database, the timer, and so on. The initial section is used to
initialize static values and parameters used in the hydrologi-
cal model, to store lookup tables of various parameters, and
to define the major geographical databases, such as digital
elevation model, land use and land cover, and basin spatial
maps. The dynamic section is used to apply the temporal be-
havior of the hydrological model by running the operations
on maps for every time step in sequence. PCRaster also has a
multicore module to facilitate the parallel running mode. We
used the multicore capability in the workstation to decrease
the simulation time.

QG =Qr ·Cr +Qs ·Cs (4)
Qd =QR (1− k)+QR(d−1)k+QB (5)
Z = f (Z,I,P ) (6)

The only spatially and temporally varying input data re-
quired for our model are the precipitation and temperature.
Our model is able to interpolate the station data as well as
use the gridded NetCDF data files that may be obtained from
global and regional models and reanalysis data.

2.2 Input data

In the present version of our model, land use and land cover
are classified into eight categories: forest, grassland, agricul-
ture, barren land, waterbodies, built-up area, debris-covered
glacier, and clean/bare glacier.

To calibrate and validate PyGDM, we applied the model
to the Trishuli River basin, which covers part of China and
Nepal. We used the gridded land use and land cover data
(Fig. 2), which were obtained by modifying and reclassi-
fying the Esri LULC (land use and land cover) derived
from Sentinel-2 imagery at a 10 m resolution (Karra et al.,
2021) (https://livingatlas.arcgis.com/landcoverexplorer, last
access: 10 June 2024). To reclassify land classes for glacier,
the Randolph Glacier Inventory Version 6.0 (RGI v6.0)
glacier outlines were used. A 30 m resolution digital eleva-
tion model (DEM) was obtained from the Shuttle Radar To-
pography Mission (SRTM) 1 arcsec Global 30 m DEM from
the United States Geological Survey (https://earthexplorer.
usgs.gov, last access: 10 June 2024).
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Figure 2. Land use and land cover (LULC) of Trishuli River basin.
We used the LULC from Esri and modified it as per the require-
ments of our model. The Esri LULC was produced by Impact Ob-
servatory, Microsoft, and Esri (Karra et al., 2021). Publisher’s re-
mark: please note that the above figure contains disputed territories.

Table 1. Parameters and coefficients for modeling.

Parameters Values

δgw,sh (d) 10
δgw,dp (d) 65
αgw,sh 0.3
αgw,dp 0.5
βdp 0.8
Kx 0.7
Tc (°C) 2
kd 3

2.3 Parameters

Table 1 shows the main parameters used in the discharge sim-
ulation, baseflow calculation of shallow and deep aquifers,
and critical temperature. All of the parameters have been
identified from our past research (Kayastha et al., 2020).

Table 2 shows the degree-day factors, runoff coefficients,
and interception thresholds for each of the land use cat-
egories used in the model. These factors and coefficients
are taken from our research as well as past publications
(Kayastha et al., 2005, 2020).

The interception is dependent on the land use and is mod-
eled as a threshold value. The interception thresholds vary
per land use type and have been adopted from the guidelines
provided by Gerrits (2010).

Figure 3. Calibration and validation of discharge for the Trishuli
River basin.

3 Results and discussion

The PyGDM model ran successfully in multicore mode with
highly acceptable results. The simulation time was below
10 min for a 1-year simulation at a 30 m grid resolution. The
simulation time period may be altered by the actual compu-
tational power, RAM, and the CPU core characteristics.

A total of 4 years of simulation was used for the cali-
bration and validation of the model, respectively. The cal-
ibration and validation results of the model are shown in
Fig. 3. The Nash–Sutcliffe efficiency and the volume differ-
ence were the statistical metrics used in the evaluation. Both
of the metrics are within the acceptable limits of the perfor-
mance of the models. PyGDM is also capable of evaluating
the component contribution of hydrological processes, such
as baseflow, rain, snowmelt, and ice melt, on the total dis-
charge of the basin. The contribution of process components
to the discharge of Trishuli River basin is shown in Fig. 4.
Although the spatial variation is not presented in this paper,
the PyGDM modeling system is able to plot the spatially dis-
tributed maps of the output variables as well as animations
depicting the temporal development of the hydrological re-
sponse of the basin. The calibration and validation results
are within the acceptable regime. The speed of simulation in
multicore mode also promises very effective application of
this model in multiyear and decadal simulations of the hy-
drological response and climate change scenarios in the Hi-
malayan river basins. PyGDM is also capable of ingesting a
diverse set of input data, and the use of the Python language
gives an easy platform to upscale the model with respect to
the use of new subprocesses.

4 Conclusions

A glacio-hydrological model built on positive degree-day
factors for glacier melt modeling was successfully integrated
with PCRaster Python software to enable a distributed ap-
proach and enhance the scalability of the conceptual model
for application in the entire Himalayan region. The dynamic
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Table 2. Degree-day factors and runoff coefficients.

Month Degree-day factor Runoff coefficient for eight land uses

Kb Ks Rc_L1 Rc_L2 Rc_L3 Rc_L4 Rc_L5 Rc_L6 Rc_L7 Rc_L8

Jan 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Feb 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Mar 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Apr 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
May 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Jun 8.0 8 0.7 0.8 0.7 0.7 0.95 0.95 1 1
Jul 8.0 8 0.7 0.8 0.7 0.7 0.95 0.95 1 1
Aug 8.0 8 0.7 0.8 0.7 0.7 0.95 0.95 1 1
Sep 8.0 8 0.7 0.8 0.7 0.7 0.95 0.95 1 1
Oct 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Nov 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1
Dec 10.5 9.5 0.3 0.5 0.5 0.3 0.95 0.95 1 1

Figure 4. Components of discharge for the Trishuli River basin.

modeling capability of PCRaster has been coupled with the
simple yet highly effective glacio-hydrological model so that
the spatiotemporal resolution of the simulation could be en-
hanced. To test this newly developed PyGDM model, cal-
ibration and validation phases of model development were
successfully completed for the Trishuli River basin. PyGDM
is ready for the comprehensive modeling and simulation of
glacio-hydrological processes in the Himalayan basins. The
flexibility, scalability, and the simplicity of using available
environmental data in the Himalayan region are the main ad-
vantages of PyGDM.
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