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Abstract. Post-processing methods such as univariate bias adjustment have been widely used to reduce the
bias in the individual variable. These methods are applied to variables independently without considering the
inter-variable dependence. However, in compound events, multiple atmospheric factors occur simultaneously
or in succession, leading to more severe and complex impacts. Therefore, a multi-variable bias adjustment is
necessary to retain the inter-variable dependence between the atmospheric drivers. The present study focuses
on a multi-variable bias adjustment of surface air temperature and relative humidity in a multi-model ensemble.
We investigated added values and biases before and after adjusting the variables. There are gains and losses
throughout the process of adjustment. The bias adjustment effectively reduces bias in surface air temperature;
however, it shows bias amplification for relative humidity at higher altitudes. Added values were improved at
lower altitudes but showed reductions in surface air temperature at higher altitudes. Overall, the bias adjustment
shows improvement in reducing bias over low-altitude urban areas, encouraging its application to assess com-
pound events. These findings highlight a potential bias adjustment approach for the regions with a constraint on
observational data.

1 Introduction

Quantifying the impact of climate change at a regional scale
requires reliable, unbiased information. General circulation
models (GCMs) have been our main source of knowledge on
the past and future climate; however, regional-scale surface
and atmospheric drivers of climate extremes are not well re-
solved in GCMs (Ayar et al., 2015). Therefore, regional cli-
mate models (RCMs) are widely used to dynamically down-
scale the GCMs. RCM products have been known to provide
a clearer understanding of surface-induced processes com-
pared to the parent model. However, they still have uncer-
tainties, contributing to biased model output (Giorgi, 2019).
Some of these uncertainties are related to the structural dif-
ferences and internal variability in climate models, while
some are related to the boundary conditions and bias prop-
agation from GCM to RCM (Addor et al., 2016).

Bias Adjustment

Bias adjustment methods are the primary post-processing
tools to reduce model bias. Many methods have been devel-
oped and applied to post-process climate simulations. Most
bias adjustment methods reduce the bias by adjusting the sta-
tistical features, such as quantiles (Themeßl et al., 2012) and
variance (Berg et al., 2012). Some methods focus on adjust-
ing the boundary conditions of GCM to improve the RCM
simulations (Bruyère et al., 2013; Kim et al., 2023). How-
ever, these methods are applied to single variables (univari-
ate) at a time, i.e., independently (Hempel et al., 2013). Due
to this limitation, the inter-variable dependence is often not
considered, which might lead to misinterpretation of the re-
sults. Past research suggests that the single-variable bias ad-
justment methods suffice the specific regional impact studies
(Casanueva et al., 2018). However, inter-variable dependence
is significant for assessing compound events where multi-
ple variables play a crucial role (Zscheischler and Senevi-
ratne, 2017). Multi-Variable Bias Adjustment (MBA) meth-
ods were, thus, developed for consistent impact assessment.
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However, similar to univariate bias adjustments, MBAs focus
on correcting the statistical features and lack consideration of
physical parameters such as underlying terrain. Topography
is essential when the multiple surface-sensitive drivers regu-
late compound events or for understanding the hydrological
processes over complex terrain. Some studies incorporated
topography to downscaling reanalysis products and climate
models (Gupta and Tarboton, 2016; Fiddes et al., 2022) and
noted a relative advantage of acquiring reliable climate infor-
mation over complex terrain. However, our study considers
topography exclusively for bias adjustment purposes, focus-
ing on the drivers of heat stress, the surface air temperature,
and relative humidity (Davis et al., 2016), which are sensitive
to the underlying terrain.

This study investigates the uncertainties associated with
the bias adjustment method, based on topographical adjust-
ment of surface air temperature and relative humidity in a
multi-model ensemble of GCM-RCM. Therefore, this study
refers “multi-variable” to model simulated surface air tem-
perature and specific humidity (which has been used to esti-
mate relative humidity).

2 Data and Method

We analyzed the 2 m surface air temperature (T 2) and esti-
mated relative humidity (RH) from an ensemble of Global-
(GCM) and Regional-Climate Model (RCM) simulations
performed by Nayak et al. (2018) over Japanese land. The
ensemble includes three RCMs, NHRCM, -NRAMS, and
WRF, forced by Japanese 25-year Reanalysis (JRA25) and
three GCMs, CCSM4, MIROC5, and MRI-CGCM3. The
RCM simulations are at 20 km horizontal grid spacing for the
present climate (1981–2000) and future climate (2081–2100)
under RCP4.5. The analysis in this study is based only on the
present climate. For validation, the daily observation data on
T 2 (1981–2000), RH (2008–2020), and Elevation (DEM) are
obtained from the NARO gridded (1 km grid spacing) dataset
(Ohno et al., 2016). Hourly simulated climate data was ag-
gregated to their daily means and were regridded on a refer-
ence Lat–Long grid with 20 km spacing with the inverse dis-
tance weighting method for a consistent comparison (Dodson
and Marks, 1997).

The Multi-variable Bias Adjustment is based on the topo-
graphical adjustment of surface climate variables. We follow
the Micromet framework detailed in Liston and Elder (2006).
This method was initially developed to adjust individual vari-
ables from the weather station dataset; however, we adapted
it to adjust multiple climate variables.

Ensemble simulations obtained from the study of Nayak
et al. (2018) provide specific humidity instead of RH. There-
fore, we obtain RH through the empirical method.

First, we calculate the mixing ratio and vapor pressure
(hPa) from model simulated specific humidity and surface
pressure (Wallace and Hobbs, 2006), which are used to cal-

Figure 1. (a) Observed mean surface air temperature, T 2 (°C), in
July for the period 1981–2000; Observed mean relative humidity,
RH (%), in July for the period 2008–2020.

Figure 2. Process of RH estimations and adjustment to topography.

culate the dew point temperature as detailed in Liston and
Elder (2006). The adjustment factor, h, is estimated using
the lapse rate, 0 (°C km−1), NARO elevation, hDEM (in km),
and model elevation data hmodel (in km),

h= 0(hDEM−hmodel) (1)

Once we obtain the adjustment factor, T 2 and dew point tem-
perature are adjusted and used for the RH estimations ac-
cording to the Micromet framework. The Bias adjustment is
applied to each of the GCMs, RCMs, and JRA25. Ensemble
means of the GCMs, GCM-forced RCMs, and JRA25-forced
RCMs are estimated before and after the adjustment. Here,
we primarily focus on the ensemble means, but more infor-
mation on biases in each model is shown in the Supplement.

We also assess the added value (AV) of the RCMs to exam-
ine the impact of bias adjustment. The added value (AV) is-
sue has been central to the climate model community (Rum-
mukainen, 2015). AV is found to depend on model grid res-
olutions (Lenz et al., 2017), physical processes such as con-

Proc. IAHS, 386, 55–60, 2024 https://doi.org/10.5194/piahs-386-55-2024



S. Kelkar and K. Dairaku: Investigation of Uncertainties in Multi-variable Bias Adjustment 57

vective processes (Schaaf and Feser, 2018); as well as com-
plex topography regions like mountainous terrains (Torma et
al., 2015), which indicates the AV of the downscaled prod-
uct is most likely when local and regional scale processes
are essential for the climate and characteristics of the region.
We use a metric of squared errors in climate variable (X) (Di
Luca et al., 2013).

AV= (XGCM−XObservation)2
− (XRCM−XObservation)2 (2)

The added value defined here retains the units of the cli-
mate variables in the metric. It is positive whenever the biases
in the RCMs are smaller than in the GCMs.

Before moving forward to the next section, we would like
to note that this methodology adjusts the drivers to the under-
lying topography. Thus, it is irrelevant to the long-term trend
and data training period.

3 Results and Discussion

Here, for brevity, we show the results for July, one of the
hottest months in Japan. Figure 3 shows the mean bias in
surface air temperature during July before (a, c) and af-
ter (b, d) applying the adjustment factor to the RCM en-
semble – forced by three GCMs – MRI-CGCM3, CCSM4,
and MIROC5 (Fig. 3a, b) and JRA25 reanalyses (Fig. 3c,
d). Mean bias is a 20-year mean of difference between daily
model and observational data.

Here, we examined the model ensemble mean only and ob-
served negative bias over most of the Japanese land and weak
positive bias over northern parts for the GCM forced RCM
ensemble (Fig. 3a). On the other hand, the JRA25 forced
RCM ensemble shows weak bias (Fig. 3c). Differences in
bias before and after adjustment for each model are shown in
Supplement Figs. S1–S6.

After applying the adjustment factor, the bias has promi-
nently reduced, as seen in the rightmost panels of Fig. 3,
which shows the difference in the absolute value of bias be-
fore and after adjustment.

The positive value indicates that the magnitude of bias be-
fore the adjustment was larger than after the adjustment, in-
dicating bias reductions.

We indicate bias reductions from the perspective of abso-
lute values as these biases are both positive and negative and
would have obscured examining bias reductions otherwise.

As discussed earlier, the dependence structure between the
climate variables is crucial for consistent assessment of com-
pound events such as heat stress. The multi-variable bias ad-
justment includes the adjusted T 2 while estimating the RH to
consider the inter-variable relationship between T 2 and RH.
Here, the inter-variable dependence is considered through the
empirical relationship between T 2 and RH and not through
the statistical features such as quantiles or probability distri-
butions. In Fig. 4, we compare relative humidity during July
before (b) and after (a), applying the adjustment factor to the

Table 1. Bias at different altitude ranges (in meters) before (w/o)
and after (w/) bias adjustment.

Altitude 0–500 500–1000 1000–1500 1500–2000 2000–2500

T 2 Bias (°C) in GCM-forced RCM

w/ −0.06 −0.89 −1.78 −3.21 −5.27
w/o −0.45 0.23 0.56 1.78 2.51

T 2 Bias (°C) in JRA25-forced RCM

w/ 0.25 −0.41 −1.14 −2.53 −4.50
w/o −0.14 0.70 1.19 2.46 3.29

RH Bias in GCM-forced RCM

w/ 4.72 8.83 11.69 19.45 27.01
w/o 5.46 6.02 5.61 5.86 4.40

RCM ensemble. We show the comparison for GCM forced
ensemble because humidity data is available for GCM forced
ensemble only.

Intriguingly, after applying the adjustment factor (Fig. 4b),
coastal regions and the Kanto plain of central Japan show
a reduction in bias, yet mountainous areas of northern and
central Japan display added bias. On the other hand, in the
case of T 2, we observe cold bias at high altitudes (Table 1).
These results indicate that the impacting factors could orig-
inate from the empirical formulation of bias adjustment and
calculation of RH.

It also points out that the bias reductions are also based
on removing surface dependence of air temperature and rela-
tive humidity; however, it does not affect the bias originating
with structural differences in each model. Since the struc-
tural difference arises from different physical schemes used
in the model framework, the retained bias is also related to
the precision of physical schemes in resolving atmospheric
conditions.

Added value assessment contributes to our understanding
of the model uncertainties. It highlights areas where models
may excel and areas where they may fall short. In our study,
we investigated altitudinal variation added value (Fig. 5).
Positive added values are present before adjustment, indi-
cating additional information provided by RCM. After the
adjustment, RCMs still provide additional information but
at a lesser magnitude. On the other hand, at lower altitudes,
negative added values before adjustment are improved after
adjustment (Fig. 5b, d), highlighting the combined skill of
bias adjustment and RCM. It also indicates that the GCM
biases have become comparable to RCMs after that adjust-
ment, leading to significant improvement in values added at
lower.

Similar to the estimation of added values for air tempera-
ture, added values for relative humidity were also calculated.
The added bias in RH after adjustment at higher altitudes
has impacted the overall representation of added values. The
magnitude of added bias in the GCM ensemble was signifi-
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Figure 3. T 2 bias (°C) before (a, c) and after applying adjustment factor (b, d) to GCM- (a, b) and JRA25-forced RCM ensemble simula-
tions (c, d).

Figure 4. RH bias before (a) and after (b) applying adjustment fac-
tor to GCM forced RCM ensemble simulations.

cantly larger than in RCMs, indicating strong positive added
values (Fig. 6a, b).

In our study, the efficiency of Multi-Variable Bias Adjust-
ment varied from variable to variable. In the case of air tem-
perature, warm biases were reduced, but it retained a cold
bias after the adjustment. As Multi-Variable Bias Adjust-
ment is solely based on topography adjustments, the bias re-
ductions are also based on removing the biases arising from

Figure 5. Comparison of added value in T 2 in GCM forced (a, b)
and JRA25 forced (c, d) ensemble simulations.

orography representation in the climate model; however, it
does not affect the bias originating from the structural dif-
ferences in each model. Dissimilarity in physical schemes
applied in each model to simulate surface-dependent con-
vective processes would still contribute to total bias. In the
added values, large added biases in GCMs after the adjust-
ment resulted in strong positive added values, indicating that
the interpretation of this type of added value might be related
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Figure 6. Comparison of added value in RH in GCM forced RCM
ensemble simulations.

to the magnitude of the added bias and not reductions in bi-
ases after the adjustment.

4 Conclusions

The multi-variable bias adjustment shows a substantial re-
duction in T 2 bias after the adjustment. Noticeably, the
strong bias over the complex topography of central and
northern Japan was reduced. Furthermore, the value added
by the RCMs for T 2 shows reduction at higher altitudes.
In addition, the more substantial negatives observed over
lower altitudes were improved to weaker negatives. On the
other hand, the assessment of RH shows bias reductions over
lower altitude areas (< 500–700 m); however, the bias is re-
tained over mountainous areas. Preserving inter-variable de-
pendence is prominent for compound event assessment; how-
ever, in the case of a climate model, retaining that depen-
dence would be challenging because of inherent biases. As
highlighted earlier, the bias adjustment based on topographi-
cal adjustments reduces the effect of underlying topography
but does not affect the bias originating from the structural
differences inherent to the model. Therefore, another justifi-
cation for amplified RH bias could be the combined effect of
bias propagated from the parent model to RCMs, the inter-
variable (while estimating RH from T 2) bias transition, and
the limitation of the bias adjustment method in considering
the bias related to structural uncertainties. Overall, we ob-
serve bias reduction over low altitudes. The advantage of
considering topography-based post-processing is it is inde-
pendent of observational data, allowing its application when
observational records are limited or lacking over a particular
region (e.g., Tibetan plateau) or for long-term assessments
(e.g., pre-industrial, future projections). Hydrological stud-
ies could also benefit from this approach, as processes such
as rainfall run-off are highly sensitive to the terrain; however,
they remain to be explored in future studies.

Code and data availability. Climate model data analyzed in this
study is obtained from Nayak et al. (2018). The observation data is
obtained from NARO (Ohno et al., 2016) and can be accessed upon
registration from https://amu.rd.naro.go.jp/ (NARO, 2024). Data
is analysed using CDO (https://code.mpimet.mpg.de/projects/cdo/
embedded/index.html#x1-30001.1, Schulzweida, 2020) and visual-
ized with GrADS (http://cola.gmu.edu/grads/downloads.php, Grid
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