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Abstract. Megacities in developing countries are commonly affected by flooding events. The use of flood mod-
els can contribute to an evidence-based decision-making process. For a good representation, these models require
physical data for catchment parameterization, and observed data for calibration and validation, which is often
scarce. In this study, we analysed the performance results of physically-based (HEC-RAS, CADDIES) and AI-
based (LSTM) flood models for two case studies: the Narmada basin in India and the Aricanduva catchment in
Brazil. The models were evaluated for accuracy, interpretability, running time, and complexity.

1 Introduction

Flood models are good tools to guide public policies for miti-
gation and adaptation to extreme rainfall events since they al-
low simulation of different strategies scenarios. It is possible
to separate the models into two main categories, those based
on physical processes and characteristics of the area (here
called physically-based) and those based on artificial intelli-
gence (AI), which are mainly based on time series analysis
of the data (here called AI-based).

Batalini de Macedo et al. (2022) performed a bibliometric
review of flood models and observed a significant increase
in their use since 2016, both for physically-based and AI-
based. Furthermore, the main keywords identified in the lit-
erature were “HEC-RAS” for studies with physical models,

and “machine learning” for studies with AI models, between
them, “LSTM”.

The different purposes when using flood modelling re-
quires different results generated by the model (such as
spatial-temporal resolution) and different processing time
(e.g. early warning systems requires results in enough time
to take response actions). Additionally, the monitoring con-
ditions of the basin (e.g. ungauged or poorly gauged) may
affect the applicability of a model and the quality of the re-
sults.

Thus, studies resembling these models for different scales
and purposes of use can provide important information to
help decision-makers choose which model to adopt.

Therefore, in this study, we analysed the performance of
two physically-based flood models, with different levels of
complexity and of a AI-based model. The comparison was
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made for two case studies in partially-gauged basins with dif-
ferent scales in India and Brazil.

2 Methodology

The models chosen for evaluation and the metrics used
to analyse their performance (in terms of accuracy, inter-
pretability, running time, and complexity) are briefly pre-
sented. The analysis was made for two case studies are pre-
sented, with different scales of application, located in India
and Brazil.

2.1 Physically-based (PB) flood models

The physical models chosen for evaluation were the HEC-
RAS and the CADDIES, both open-access. The HEC-RAS
is a physical model developed by the US Army Corps
of Engineers (HEC, 2018) that allows simulations of one-
dimensional steady and unsteady flow and two-dimensional
unsteady flow calculations (here called as HEC-RAS 2D).
HEC-RAS uses the four-point implicit finite difference
scheme. Its main input parameters for the development of
flood maps are bathymetry data or Digital Elevation Models
(DEM), roughness coefficients for each type of land use, and
the series of stage and flow hydrographs as boundary condi-
tions. In the absence of observed data downstream, the model
also allows defining normal depth as a boundary condition.

CADDIES is a cellular automata model that allows dis-
cretely simulating shallow water equations (SWEs) in grids.
Instead of using transition rules, this model is based on the
previous state of the cell and neighbouring cells, with rules
that control the evolution of the state of each cell (Guidolin
et al., 2016). The model uses rainfall series, the DEM, and
an average roughness coefficient for the catchment as input
data, therefore, with a high simplicity for the user. Its profes-
sional version (CADDIES PRO) allows different roughness
coefficients for each land use; however, it is not open access.

2.2 Artificial intelligence (AI) flood model

The AI model chosen was the LSTM. This model is a vari-
ation of the recurrent neural network (RNN), incorporating
the ability to learn long-term dependencies, especially in se-
quence prediction problems (Shen, 2018). Compared to sim-
ple RNN, instead of having one state variable, the informa-
tion in LSTM units is controlled by cell states and input,
forget, and output gates. There are many variants of LSTM
based on the interconnection of these gates, which control
what information should be added, forgotten, and obtained
as output from the LSTM cell. In this study, we evaluate the
simple LSTM network for predicting flow in the river.

The LSTM model was trained for both study areas us-
ing daily meteorological forcing (rainfall, temperature, so-
lar radiation, relative humidity, wind speed) and static water-
shed attributes (mean elevation and slope, land use land cover

characteristics and soil characteristics). The RMSE between
the observed and simulated streamflow was chosen as the
loss parameter to be minimized across training sequences.
As a pre-processing of the dataset, the daily streamflow and
rainfall distributions were transformed to get the distribution
close to normal since rainfall and streamflow typically have
the Gamma distribution (Mangukiya et al., 2023). The hy-
perparameter of the LSTM model was manually optimized,
and finally, 365 d of training instances, a hidden-state size of
256, and a dropout rate of 0.5 were used. As final result, the
ensemble results from five simulations with different random
seeds were obtained to reduce the uncertainty of the LSTM
model output due to its stochastic nature. More details of the
LSTM model strategy adopted can be read from Mangukiya
et al. (2023).

2.3 Metrics for evaluation

To evaluate the applicability of the flood models for differ-
ent study areas, their performance was compared in terms of
accuracy, running time, complexity, and interpretability. For
accuracy, the NSE (Eq. 1) and NRMSE (Eq. 2) of the water
level were calculated.
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Where: Qo is the observed discharges, Qm is the modelled
discharge, at times t . For HEC-RAS, Qo and Qm were ob-
tained for a intermediate gauge station in the catchment, as
for LSTM they were obtained for the exutory gauge station.

The accuracy was assessed just for HEC-RAS and LSTM
simulations, as the CADDIES model generates only maxi-
mum flood depth instead of a time series; in the second case,
a qualitative analysis was performed, comparing with pic-
tures taken from citizens during the event modelled, for point
known.

For the running time, it was presented the time taken for
each model to provide the final flood map and a description
of the CPU features used for each case. The complexity was
evaluated from each model’s input parameter and configu-
rations. Finally, interpretability is a more subjective metric,
including discussing the results provided by each model and
the ease of understanding its results and applying them in the
decision-making process.

2.4 Study areas

Two study areas were selected for this study, representing
different contexts for floods.

The first case study is the Aricanduva catchment, located
in São Paulo – SP, Brazil (Fig. 1), covering an area of
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Figure 1. Location of Aricanduva catchment.

102.5 km2. This catchment is completely urbanized and has
recurrent flood events, including flash floods. The popula-
tion density is high and therefore it has high risks of people
displacement, injuries, and economic losses (Simas, 2017).
Additionally, this catchment is well monitored, with rain-
fall, stream flow, and stage data monitored each 10 min for
10 years by SAISP system (Barros et al., 2016; SAISP, 2023).
However, data from flood extent and water depth outside the
channel are not monitored, therefore, being considered a par-
tially gauged catchment.

The simulations were performed for the extreme rainfall
event that occurred the 16 February 2019, with observed
rainfall data of 10 min being used as input for CADDIES
and HEC-RAS and. One point of stream flow data was used
as input boundary condition in HEC-RAS and input data in
LSTM, and the other was used to verify of model accuracy.
As for the DEM, the SRTM with 30 m resolution was used.

The second case study is the Narmada basin in India
(Fig. 2). The Narmada River is India’s sixth-longest and fifth-
largest river, with a basin area of 98 796 km2. The lower
part of the basin is bounded by Sardar Sarovar Dam and the
coastal region. The primary LULC class of the Lower Nar-
mada basin is agriculture cropland (61 %), dense vegetation
and forest (21 %), and urban land (8 %).

The river stretch in the lower Narmada basin is monitored
by a gauge station at Garudeshwar weir (which observes wa-
ter level and discharge) and Bharuch golden bridge (which
observes water level) (IMD, 2023; India-WRIS, 2023).

The simulations were performed for the extreme rainfall
event that occurred the 9 July 1994, with observed daily
rainfall data being used for CADDIES and observed hourly
streamflow as input for HEC-RAS and LSTM. One point
of streamflow data was used as input boundary condition in
HEC-RAS, and the other was used to verify of model accu-
racy. As for the DEM, the SRTM with 30 m resolution was
used (USGS, 2023).

Figure 2. Location of Narmada basin.

For both case studies, the models were not calibrated,
since there was no spatial monitored data to calibrate CAD-
DIES and HEC-RAS 2D. Additionally, the inflow data was
used as input to LSTM and initial boundary condition to
HEC-RAS. Even though, we have used a calibrated hyper-
parameter on the Manning’s roughness coefficient, based on
previous studies and land use characteristics.

3 Results and Discussion

Considering the different aspects of the two case studies, the
flood model results were evaluated (Table 1). As seen from
Fig. 3 and Table 1, the CADDIES model performed well in
the Aricanduva basin, when comparing to HEC-RAS results.
While for the Narmada basin, the flood extent and depth
in the downstream part of the basin was severely underes-
timated (Fig. 4), when comparing to the results obtained by
HEC-RAS.

The flood event in the Narmada basin is mainly a fluvial
flood, that happens due to the incapacity of the river channel
to conduct all the inflow that arrives from the Sardar Sarovar
Dam, located upstream, during extreme rainfall events, over-
flowing. The HEC-RAS 2D can account for this overflow,
since it takes the flow monitored coming from the dam as an
upstream boundary condition. However, in the open-access
version of the CADDIES model, the only input variable is
the rainfall, therefore it cannot account with the inflow com-
ing from the dam. This limitation explain the discrepancy
between the Narmada case study results from HEC-RAS and
CADDIES.

In the Aricanduva basin the CADDIES model performed
well considering the simplicity of inputs. In this case, as the
main problems related to flooding in the basin are due to rain-
fall, the model obtained good results. When analyzing the
flood maps for the Aricanduva catchment using CADDIES
and HEC-RAS, we can see that both generated very similar
results. However, CADDIES takes much longer to run.
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Table 1. Model performance metrics.

Model Type of result Case study NSE/NRMSE Running time

HEC-RAS Spatial and temporal
Aricanduva 0.72/0.19 25 sa

Narmada 0.85/0.15 31 min 15 sa

CADDIES Spatial
Aricanduva – 1 min 43 sa

Narmada – 10 h 1 min 33 sa

LSTM Temporal
Aricanduva 0.79/0.88 57 min 21 sb

Narmada 0.80/0.94 55 min 45 sb

a i7-8565U CPU@ 1.80 GHz 1.99 GHz, RAM 8 GB. b Intel Xeon CPU E5-1650 v3@3.50 GHz 3.50 GHz, RAM
8 GB, training time and test time considered.

Figure 3. Flood maps results for Aricanduva catchment when using
CADDIES and HEC-RAS models.

Another aspect to consider about the HEC-RAS is the
higher level of knowledge of hydrological variables required
from the user and their influence on the results. Thus, small
changes in the variables used can be very significant in the
final values, so uncertainty needs to be considered. On the
other hand, there is also greater flexibility in adjusting and
calibrating the model until obtaining satisfactory results.

Figure 5 shows SAISP reported flood locations in the Ar-
icanduva catchment and the detailing of a flooding area in
Aricanduva avenue near the bridge Eng. Alberto Badra dur-
ing the flood event simulated by the models. The extent and

Figure 4. Flood maps results for Narmada basin when using CAD-
DIES and HEC-RAS models.

values of the flooded spot are very similar for both models,
including the numerical values for the pixel, 5.3 and 5.1 m us-
ing the CADDIES and HEC-RAS model, respectively. Thus,
although we do not have enough data to validate the gen-
erated flood maps, we can consider the results satisfactory
since most of the points reported as flood sites had the high-
est depths reported in the maps generated by the models, in
addition to the consistency between both results.
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Figure 5. Flood spots reported by SAISP and the max depth results for the area using CADDIES and HEC-RAS. Picture source:
Paulino (2020).

LSTM and HEC-RAS models can generate discretized re-
sults in time. However, LSTM does not perform hydrody-
namic simulations. The LSTM made reasonable estimates
for both case studies (Table 1), proving to be quite flexible
for different applications. It also had lower execution time
than CADDIES, but still above HEC-RAS. The running time
for LSTM have considered both training time and test time
since we were comparing the entire applicability of the mod-
els. However, for practical application of the LSTM, after the
training, only the test time must be considered, which was
19 s for both cases.

4 Conclusions

This study evaluated the performance of physically-based
and AI-based models in predicting floods at (i) an urban
catchment and relatively small area in Brazil and (ii) a ru-
ral and huge catchment in India.

From the results, the only unsuitable outcome from the
models was the one for the Narmada basin using the CAD-
DIES model. From this, we can conclude that the model is
most adequate for urban areas, especially for pluvial floods,
without a considerable amount of flow insertion in the system
from some other river or upstream structure.

CADDIES and HEC-RAS had very similar results for the
Aricanduva catchment. The advantage of CADDIES is that it
is much simpler to configure, does not require the insertion of
boundary conditions, and uses only rainfall as an input vari-
able. However, the CADDIES model takes much longer to
run. HEC-RAS has the advantage of allowing us to evaluate

results over time. Further, it allows the simulation of several
processes, simpler to complex settings depending on the data
availability, and structured processes for model calibration
and validation.

When considering execution time, accuracy, and temporal
results, the LSTM model and the HEC-RAS appear ahead.
Depending on the application of the results, the LSTM model
may be more suitable, for example, for flow prediction for
the operation of reservoirs and drainage control structures,
since the flood extent visualization is not required for these
cases and has the advantage of being more easily applied in
different case studies.

We strongly suggest performing uncertainty analysis for
future studies, as data limitation leads to significant uncer-
tainty beyond the complexities in all the models used. More-
over, several other model configurations, metrics, and statis-
tics should be analyzed in-depth when evaluating models’
performance.

Code availability. he HEC-RAS software is freely available from
US Army Corps of Engineers Hydrologic Engineering Section
(HEC, 2018, https://www.hec.usace.army.mil/software/hec-ras/).
he CADDIES software is freely available from University of
Exeter (Guidolin et al., 2016, https://www.exeter.ac.uk/research/
centres/cws/resources/caddies/). The python code for developing
the LSTM model can be accessed from https://github.com/mhpi/
hydroDL (Feng et al., 2023), this code was developed from a third
part.
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Data availability. The digital elevation map is available from the
Shuttle Radar Topography Mission dataset from USGS Earth-
explorer (https://earthexplorer.usgs.gov/, USGS, 2023). The rain-
fall and streamflow datasets for the Narmada basin are avail-
able from India Meteorological Department (IMD) (2023, https:
//dsp.imdpune.gov.in/) and India Water Resource Information Sys-
tem (India-WRIS) (2023, https://indiawris.gov.in/wris/), respec-
tively. The rainfall and streamflow datasets for the Aricanduva
catchment are available from the São Paulo Alert System of
Inundation (SAISP) (SAISP, 2023, https://www.saisp.br/estaticos/
sitenovo/home.html, https://portal.inmet.gov.br/).
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