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Abstract. This study investigated the probability of road closure due to flooding. Logistic regression model
was developed using the road closure data and the daily rainfall data for Houston, TX, USA during 2017 and
2018. The road network was further divided into flood prone zones. The spatial analysis revealed that the rainfall
at the road segment level could be sufficiently represented by that recorded by nearest sensors. Within a 4 d
window, the rainfall in the current day and 3 d prior played a more influential role in predicting road closure. The
differential outcomes due to distinct regional features were explained. Finally, a watershed delineation approach
substantially improved the model’s predictive power and sensitivity.

1 Introduction

Climate change has been escalating the frequency and sever-
ity of natural disasters, such as floods, hurricanes, and wild-
fires (NOAA, 2020). For all the billion-dollar events hap-
pened in the US, floods alone killed 176 people and re-
sulted in USD 65.9 billion in damages between 2011 and
2021 (NOAA, 2022). Thus, accurate prediction of disasters
and their impact is crucial to reducing future losses and build-
ing community resilience.

There is a rich and growing body of literatures on flood
modelling, focusing on the key drivers including storm surge,
riverine, and pluvial (e.g., Suh et al., 2015; Maggioni and
Massari, 2018; Yin et al., 2016). Hydrodynamic models are
used for determining water levels across space and time
(Chatterjee et al., 2008; Yin et al., 2016) while statistical
models are primarily for risk analysis (Apel et al, 2004),
and insurance rate setting (Gallagher, 2014). For example,
Shafapour et al. (2017) combined 15 factors to map flood
susceptibility in JiangXi Province, China, employing three
methods: frequency ratio, logistic regression and weight of
evidence. However, the use of mean annual precipitation

overlooked monthly variation at each station. Besides regres-
sion methods, Bayesian methods (Kwon et al., 2008; Bates et
al., 2004) took exogenous factors into consideration. In addi-
tion, Smiley et al. (2022) employed the same method to ex-
plore social inequalities in the Harris County following Hur-
ricane Harvey.

This paper examines the lag effect, which refers to the
delayed impact of rainfall on road closures, of rainfall and
its spatial variation. Multiple-day precipitation from a high-
density sensor network drives a logistical model for predict-
ing road closure.

2 Study method and data

2.1 Study area

The study area is Houston, Texas, USA as shown in Fig. 1.
In 2017, Hurricane Harvey made a landfall, causing USD 125
billion in economic loss, second only to Hurricane Katrina on
record (NOAA, 2022). Major hospitals located in the north-
west and southeast served as essential facilities for respond-
ing to the storm. For example, while searching for a miss-
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Figure 1. Main road network and sensor sites in Houston, TX.

ing family member during the storm, a patient sustained a
head injury after a fall from his all-terrain vehicle. Emer-
gency medical services (EMS) placed him in a cervical col-
lar but were unable to reach LBJ, instead transferring him to
a dump truck for transport (Chambers et al., 2020). Mean-
while, four major Interstate highways (IH 10, IH 610, IH 45,
IH69) interlaced.

2.2 Data

2.2.1 Data source

The rainfall data was retrieved from Harris County Flood
Warning System (HCFWS, 2022), including daily rainfall
values observed at 67 sensor sites and their coordinates. The
road closure data was provided by the Texas Department of
Transportation (TxDOT), containing roadway names, start-
ing and ending points, and closure period. The flood map
from the Federal Emergency Management Agency (FEMA,
2022), divides the study area into 100 return-year, 500 re-
turn year flood prone zones and the other. It is based on
local topography and rainfall-runoff Hydrologic Engineer-
ing Certer-River Analysis System model (National Research
Council, 2009). Finally, the state highway network shape-
file was obtained from Federal Highway Administration
(FHWA, 2021), with 4377 road segments totalling 638 km
in length.

In this study, rainfall is considered as the primary driver of
road closure.

Figure 2. Scatter plot of relationship between sensor distance and
difference in rainfall.

2.2.2 Pre-processing

In a large quantity of rainfall data, some sensors behaved ab-
normally during Hurricane Harvey and were removed as out-
liers. Over the 5 d period from 25 to 29 August 2017, the av-
erage daily rainfall was most severe, between 3 inch and 12
inch. The sensors, which displayed a rainfall measurement
of 0 due to data unavailability, were first eliminated. Further-
more, spatial analysis was performed to determine if addi-
tional outliers existed. In Fig. 2, each point represents the
distance between a pair of sensors and the percentage dif-
ference in their recorded rainfall values. And the upper and
lower bounds are plotted for the 95 % confidence interval for
the linearly regressed line. Points outside the interval are con-
sidered as possible outliers and their relationship with nearby
sensors are re-calculated. Those sensors outside of the inter-
val are then removed. Finally, the rainfall data is obtained
from 62 sensors. The training set contained the rainfall data
and road closure data during 2017. The testing set covered
the period from January to Augusts 2018.

Mandapaka et al. (2009) studied the correlation between
rainfall and distance. The fitted curve, shown as Eq. (1), sat-
isfies the exponential function, and the correlation decreases
with the increase in distance. Thanks to the dense sensor net-
work in the study area, the correlation between neighbouring
sensors is high (i.e. 0.79–0.99).

y = exp[−(x/40.15)0.8
] (1)

where x represents the distance between two sensor loca-
tions, and y represents the rainfall correlation.

Moreover, relating the rainfall observed at sensors to the
rainfall at road segments can be solved by spatial interpo-
lation methods such as Kriging (Oliver and Webster, 1990).
Figure 3 shows the percentage difference in segment-level
rainfall derived from two methods: nearest sensor and Krig-
ing method. The EP curve indicates that 90 % of these values
are within 11 % in difference or less. The Kriging method
is computationally intensive when applied to large datasets
(e.g., daily rainfalls from 62 sensors). Furthermore, consid-
ering the numerous factors influencing rainfall within a very
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Table 1. Model performance using rainfall data over multiple days.

Multi-day Pseudo-R2

window

2 0.209
3 0.288
4 0.343
5 0.349
6 0.350

limited range makes the situation even more complex. The
kriging method serves only as an approximate simulation ap-
proach. Thus, the method of nearest sensor is adopted here-
after.

2.3 Logistic Regression Model

The equation of Logistic regression is shown as Eq. (2).

P (Y = 1|x)=
1

1+ e−(ωT x+b)
(2)

where Y = 1 represents road closure, x represents the vector
of multi-day rainfall, b represents the vector of constant and
ω represents the matrix of weight for each independent vari-
able. In Lee and Kim’s (2021) study, 3–24 h rainfall data was
used to predict road closures, excluding hysteresis effects. In
contrast, this paper employs multi-day rainfall data to exam-
ine the role of lag effect.

The logarithmic probability of output Y = 1 is a model ex-
pressed by the function of input x. The closer the value of
b+ωT x is to positive infinity, the closer the probability value
of P (Y = 1|x) is to 1. In this paper, the cutoff value of p is
set at 0.5. There are 2 models formulated as follow:

– Model I: One logistic regression model for the whole
road network.

– Model II: Three different logistic regression model for
three different flood prone zones respectively.

3 Results

Table 1 shows the models using rainfall data over multiple
windows and their Pseudo-R2 value. Once the number of
days reaches 4, the computational demand would increase
rapidly for each additional day, but the improvement in the
Pseudo-R2 value become minimal. Therefore, the window
of 4 d is selected.

The result from Model I is summarized in Table 2. The
overall model is significant, with p < .001 and R2

= 0.343.
Meanwhile, all independent variables are significant at p <

.001. T represents the current day and T -i represents the i

day before it. While rainfall correlates positively to road clo-
sure, the influence of 3 d before the current day (T − 3) and
the current day (T ) are much larger.

Table 2. Logistic regression for Model I (Sample size N =

1584474).

Model Variable Coeff. SE Sig.

I Const. −8.444 0.051 < 0.001
T − 3 0.279 0.008 < 0.001
T − 2 0.130 0.010 < 0.001
T − 1 0.097 0.009 < 0.001
T 0.277 0.007 < 0.001
Pseudo R2 0.343
p-value < 0.001

Table 3. Logistic regression for Model II (different return year with
sample size N = 1584474).

Model Variable Coeff. SE Sig.

R1 Const. −7.716 0.081 < 0.001
T − 3 0.293 0.015 < 0.001
T − 2 0.054 0.021 0.009
T − 1 0.163 0.017 < 0.001
T 0.199 0.015 < 0.001
Pseudo R2 0.274
p-value < 0.001

R2 Const. −9.279 0.180 < 0.001
T − 3 0.28 0.024 < 0.001
T − 2 0.161 0.029 < 0.001
T − 1 0.078 0.022 < 0.001
T 0.350 0.017 < 0.001
Pseudo R2 0.447
p-value < 0.001

R3 Const. −8.643 0.071 < 0.001
T − 3 0.277 0.010 < 0.001
T − 2 0.159 0.013 < 0.001
T − 1 0.076 0.011 < 0.001
T 0.292 0.009 < 0.001
Pseudo R2 0.360
p-value < 0.001

In Table 3 results from Model II are organized by different
flood prone zones. R1 represents 100-year return-year zone,
R2 represents 500-year return-year zone, and R3 represents
the other. All independent variables are significant. Similarly,
the coefficients for the 3 d prior and the current day are larger
than others. In other word, the risk of road closure would be
high when these two days experience heavy rainfall.

Since the excessive rainfall (and inducted road closure) is
a relatively rare phenomena, the threshold of probability for
predicting road closure is set to 0.1. The confusion matrix
for Model II is shown in Table 4, where TP, FN, FP, and TN
represent true positive, false negative, false positive, and true
negative respectively. The numbers of case are given inside
parentheses.
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Figure 3. Histogram & EP curve for rainfall percentage difference based on nearest sensor and Kriging method.

Table 4. Confusion matrix for validation.

Confusion Matrix

R1 R2 R3

TP FN TP FN TP FN
6 72 4 21 17 150
FP TN FP TN FP TN
99 62 883 50 54 876 186 198 530
sensitivity 0.077 sensitivity 0.160 sensitivity 0.102
specificity 0.998 specificity 0.999 specificity 0.999

According to Eqs. (2)–(4), the sensitivity of R1 model is
0.077, indicating that this model performs poorly on predict-
ing road closure (Type I error). At the same time, the model
is superior when predicting non road closure (with the speci-
ficity = 0.999). The overall utility of the model would de-
pend on traveller’s detour cost. The model is more appropri-
ate in scenarios where detour cost is low and more alternative
routes are available.

Sensitivity=
TP

TP+FN
(3)

Specificity=
TN

TN+FP
(4)

Accuracy=
TN+TP

TN+TP+FN+FP
(5)

The closure probability at the road segment level can be ag-
gregated to estimate accessibility to essential facilities during
disasters. Here is an application to demonstrate the practical
use of this model. An illustration is given for Harris Health
Lyndon B. Johnson Hospital (labelled as Point 1 in Fig. 4)
from two intersections (labelled as Points 2 and 3): Route 1:
1→ 2, Route 2: 3→ 1. Overlaid with rainfall data during
Hurricane Harvey (26 to 29 August 2017), the probability of
inaccessibility for Route 1 due to road closure is 81.5 %, and
the probability for Route 2 is 99.2 %. Pre-storm preparations

Figure 4. Location of study hospital and the access from two inter-
sections.

could have allowed for smoother and safer ride-out function-
ing for both hospital personnel and patients (Chambers et al.,
2020).

4 Modified model based on watershed

The national scope of FEMA flood maps, while providing
a broad overview, can potentially overlook the unique at-
tributes and varying hydrological dynamics that are intrinsic
to specific regions.

Each area, due to its distinct topography and climate fac-
tors, can exhibit unique flood characteristics. These differ-
ences can significantly affect the nature and scale of flood
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Figure 5. Watershed Division Map as Generated by the HCFWS
(from HCFCDGISADMIN).

risks, and thereby the effectiveness of mitigation measures.
Therefore, it becomes imperative to adopt a more localized
approach, requiring finer regional segmentation, which can
more accurately capture the geo-difference of flood risks.

The HCFWS has provided a watershed division methodol-
ogy, leveraging Geographic Information System (GIS) tech-
nology. The analysis encompasses various steps that involve
utilizing GIS functions, such as Fill, Flow Direction, Flow
Accumulation, Con, Stream Link, Stream Order, Stream To
Feature, New Feature Class, Snap Pour Point, Watershed,
and Raster to Polygon, to accurately delineate watersheds,
determine flow paths, classify streams, convert data formats,
and analyze hydrological patterns, enabling effective flood
risk management and improved understanding of local hy-
drology. The conceptual representation of this GIS-based wa-
tershed division methodology is depicted in Fig. 5.

The numerals within the map correspond to the unique co-
denames assigned to each region, while the green lines delin-
eate the transportation networks. However, those boundaries
are based only on surface topography, and adjustments are
then required to account for storm sewer systems that influ-
ence flow patterns. That adjustment is done manually based
on review of storm sewer data.

In a similar way to the previous methodologies, the modi-
fied model employs the logistic regression method as its an-
alytical framework. This model utilizes daily precipitation
data for Harris County from August 2017 as its independent
variable. The dependent variable in this model is the opera-
tional status of roads within the area, defined as a binary out-
come: whether the road is closed due to flooding or remains
open. The model’s data set was strategically partitioned into
a training set and a test set. The training set, which comprises

Table 5. Logistic regression for Modified Model. n/a – not applica-
ble.

Watershed Sensitivity Specificity Accuracy

0 56 % 96 % 95 %
1 16 % 100 % 99 %
2 100 % 97 % 97 %
3 42 % 96 % 96 %
4 n/a 100 % 100 %
5 n/a 100 % 100 %
6 96 % 93 % 93 %
7 66 % 97 % 96 %
8 84 % 97 % 97 %
9 100 % 98 % 98 %
10 100 % 97 % 97 %

75 % of the total data, was utilized to calibrate the logistic re-
gression model. Conversely, the remaining 25 % of the data
was retained as a test set, used to validate the model’s predic-
tive capacity and gauge its overall performance. The predic-
tive outcomes of the testing set generated by the model are
shown in Table 5.

In the context of this analysis, the sensitivity metrics for
Area 4 and Area 5 are indicated as “n/a”, signifying “Not Ap-
plicable”. There are two plausible explanations. Firstly, these
regions may inherently possess a higher resilience to flood
events, attributable to various factors such as topography,
built environment characteristics, and effective flood miti-
gation measures. This superior resilience could explain the
absence of road closures during the extreme weather event.
Secondly, the limited number of road segments under inves-
tigation within these two areas could have contributed to the
observed outcomes. With a smaller dataset, the potential for
statistical bias is amplified, possibly leading to skewed re-
sults.

Due to the data presented in Table 5, it can be observed that
the specificity and accuracy measures remain relatively con-
sistent with prior outcomes, demonstrating remarkable lev-
els of precision. However, A noticeable improvement in the
overall sensitivity can be seen, indicating a substantial im-
provement in the model’s true positive rate.

Further analysis is partitioned into three sections. The first
part consists of Area 1, exhibiting a persistently low sensi-
tivity. Interpreted in practical terms, the likelihood of suc-
cessfully predicting road closures in this area remains mini-
mal. The expansive geographical area of Area 1, punctuated
with complex terrain features, including existing river sys-
tems, might be accountable for this outcome. Consequently,
factors influencing road closures in this region extend beyond
mere rainfall, complicating the prediction capabilities of a
model relying on a single input variable.

The second part, comprising Areas 0, 3, and 7, demon-
strates medium sensitivity levels. Given their geographical
locations in the southwest region of the study area, it is plau-
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sible that additional variables, such as social vulnerability
and resilience index, might contribute to the complexity of
predicting road closures in this sector.

Lastly, Areas 2, 6, 8, 9, and 10 exhibit high sensitivity lev-
els, mainly concentrated in the central and southeastern parts
of the study area. This observation suggests a strong corre-
lation between rainfall and road closures in these specific re-
gions, reinforcing the relevance of rainfall as a primary input
variable in these contexts.

5 Conclusions

The rainfall values on 3 d prior and the current day contribute
the most to the chance of road closure. This could be ex-
plained that the heavy rainfall at the beginning of a storm
wash branches or woody debris onto roads and cause road
closure. Such debris would also block drainage outlets, seri-
ously reducing drainage capacity of the road (Flanagan et al.,
1998). Current-day rainfall adds direct and immediate effect
to exceeds drainage capacity (Hammami et al., 2019). An al-
ternative interpretation of the time lag might consider its ap-
plication within a specific temporal window, in line with the
water’s travel time within the study area. In addition, there
are issues related to the regional division of the research. The
modified model demonstrated markedly better results, indi-
cating that establishing how to create a cluster is also crucial.

The results reveal two limitations that the predictions con-
sistently lean towards no closure. This bias arises for two
main reasons. First, the data collected is unbalanced, thus fu-
ture research should strive to balance the data as much as
possible during the pre-processing stage. Besides, in exam-
ining lag effects, both soil moisture and the generation of
differential flows exert influence and thus must be taken into
account.

For future study, distance to rivers, social vulnerability,
and representation of drainage network could be added to the
model to improve its sensitivity and overall performance. Ac-
cording to the regional analysis in this paper, flood risk anal-
ysis for personal preventative measures, emergency evacua-
tions, or flood insurance policies, shouldn’t be uniformly im-
plemented across broad regions. Instead, they should be cus-
tomized according to the local features, taking into account
the unique socioeconomic traits of individual households and
communities (Koks et al., 2015).
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