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Abstract. Inadequate planning of spring snowmelt discharge can lead to wastage of water resources for various
purposes such as hydropower and lead to reduced capacity of the dams to control floods during rainy season.
In this research we analyze how much can the predictive skill of long-range forecasts be improved by using a
distributed hydrological model. We used the Water and Energy Budget-based Distributed Hydrological Model
with improved snow physics (WEB-DHM-S) for generating long-range forecasts with a lead time of up to 3
months for the case of Kurobe River Basin in Japan. The predictive skills of two sets of simulations were
compared (i) climatology and (ii) ensemble stream flow prediction (ESP). In the case of ESP, the initial conditions
of WEB-DHM-S are updated using real-time datasets from Radar-AMeDAS, AMeDAS and JRA55. We found
that the model initial conditions are particularly important during the spring snowmelt season and can improve
the forecast predictive skills quite significantly compared with the climatology.

1 Introduction

Streamflow forecasts play an important role in adequate man-
agement of water resources, such as through the operation
of dam reservoirs for flood control or hydropower genera-
tion. The predictive skill of hydrometeorological forecasts
depends upon the model structure/parameterization, meteo-
rological forecasts and the model initial moisture (snow, soil)
conditions (Koster et al., 2010).

While the accuracy of meteorological forecasts at shorter
lead times is improving, their accuracy at longer lead times is
still unreliable. With the advancement in the development of
physically based distributed hydrometeorological models it
is becoming possible to estimate initial moisture (snow, soil)
conditions quite accurately. These initial conditions can play
a very important role in improving the predictive skills of
long-range meteorological forecasts. Hydropower dam reser-
voir operators often require long-range forecasts for planning
reservoir operations. The simplest way to obtain these fore-
casts is to use climatology, which is quite commonly used by
hydropower reservoir operators. However, hydropower dam
reservoirs are often located in mountainous regions where
snowmelt runoff plays an important role in hydropower pro-
duction. Here, the initial conditions of snow (in addition to

soil) can play an important role in improving the predictive
skills of the long-range forecasts.

The objective of this study is to evaluate the importance
of initial moisture (snow, soil) conditions in improving the
hydrometeorological forecasts compared with the use of cli-
matology. At first, we develop a long-range (3-month lead
time) forecasting system using historical meteorological ob-
servation (available in real-time) and the Water and En-
ergy Budget-based Distributed Hydrological Model with im-
proved snow physics (WEB-DHM-S). Then we compared
the predictive skills of this forecasting system with clima-
tology for hindcasts initialized in different seasons to evalu-
ate the contribution of the initial conditions in the predictive
skills of streamflow forecasts.

2 Study Area

For the purpose of this study, we used the case of Kurobe
River basin in Japan, a snowfed watershed which receives
heavy snowfall in the winter season. The snowmelt runoff
provides water to a cascade of hydropower dam reservoirs
operated by Kansai Electric Power Company (KEPCO).
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Figure 1. Kurobe River basin and the location of hydropower dams
in Kurobe River basin.

There are a total of four hydropower dams in this river
basin (see Fig. 1). Kurobe Dam is the largest dam out of the
four with the highest regulating capability. Since the inflows
to the downstream dams are heavily influenced by the oper-
ation of Kurobe Dam, in this study we have only considered
the area upstream of Kurobe Dam reservoir.

3 Methodology and Data

3.1 Description of WEB-DHM-S

For hydrological modelling of the watershed and for hy-
drometeorological forecasting we used the latest iteration of
WEB-DHM-S in this study called the 4-component WEB-
DHM-S model. The original WEB-DHM-S model is capable
of representing turbulent fluxes (water and energy) and can
simulate snow processes and variables such as snow depth,
snow density and spatial snow cover in addition to river dis-
charge (Shrestha et al., 2010).

The latest iteration of WEB-DHM-S has been reframed
into four main components (i) the land surface component,
(ii) the vertical soil moisture solver, (iii) hillslope runoff pro-
cesses, and (iv) kinematic wave routing. In addition, the latest

iteration of WEB-DHM-S also allows saving a “snapshot” of
the model state variables (including the snow variables) and
use them as initial conditions for forecasting. Furthermore,
the new version of the model is also more computationally
efficient due to the use of parallel programming. These fea-
tures make this new version of the model very suitable for
real-time hydrometeorological forecasting.

3.2 Model setup and datasets

Datasets can be divided into two categories, (i) static datasets
and (ii) dynamic datasets. Static datasets include the Digi-
tal Elevation Model (DEM) from Japan Geospatial Institute,
the soil type from Food and Agriculture Organization and
the land use type from United States Geological Survey. Dy-
namic datasets include the Leaf Area Index and the Frac-
tion of Photosynthetically Active Radiation, both of which
were obtain from MODIS sensors. Further dynamic datasets
include the meteorological forcings, which are very impor-
tant for forecasting. In this study the precipitation data was
obtained from Radar-AMeDAS (Automated Meteorological
Data Acquisition System), which has a resolution of 1 km
and a temporal resolution of 30 min. Air temperature is based
on the station observations from AMeDAS and is corrected
for elevation by using the vertical temperature profile from
JRA55 (Japanese 55-year reanalysis). The remaining mete-
orological variables such as wind speed, relative humidity,
downward longwave and shortwave radiation etc. were also
obtained from JRA55. The WEB-DHM-S model was set at
a resolution of 250 m and all of the datasets were regridded
to this resolution. More details about the datasets and data
pre-processing are explained by Moiz et al. (2022).

For model validation and evaluation of the skills of fore-
casts, we used the observed inflow to Kurobe dam, point
snow depth at Kurobe dam and the satellite observed snow
cover. Kurobe dam inflow and point snow depth data were
obtained from KEPCO and the snow cover data was obtained
from MODIS sensor.

3.3 Experiments

We conducted four different kinds of experiments to evalu-
ate the importance of the model initial conditions in the pre-
dictive skills of hydrometeorological forecasts. 13 years of
data was used from 2008–2020. In all of these experiments,
the model is already fully calibrated and validated against
river discharge, point snow depth and satellite snow cover
data (see Moiz et al., 2022 for details). These experiments
are visually explained in Fig. 2a–d.

In the first forecast experiment, the model is run continu-
ously for 13 years from 2008–2020. The output of the model
in this case is called Perfect Forecast and acts as the up-
per bound for the skill of forecast, as the skill of any fore-
cast cannot be better than this forecast. During this process,
the states (initial conditions) of the model are also saved for
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Figure 2. Setting of all the different experiments used to generate
forecasts (a) Perfect Forecast (b) ESP Forecast (c) revESP Fore-
cast and (d) Climatological Forecast. Here, the red arrows represent
meteorological inputs, the blue arrows show hydrometeorological
outputs and the black arrows show the meteorological data used for
model initialization.

every month. The second forecast experiment is called ESP
(Ensemble Streamflow Prediction) Forecast. In this case, the
model is initialized using previously saved states for each
time when the forecast is issued (every month). The ensem-
ble meteorological forecast in this case is obtained by resam-
pling the historical data using a leave-one-year-out approach.

For example, for the forecast issued on January 2017, me-
teorological data for all the years except 2017 is used lead-
ing to 12 ensemble members. In the case of revESP (reverse
ESP) experiment, the reverse is true. An ensemble of initial
conditions is used to generate hydrometeorological forecasts

using the leave-one-year-out approach, but the perfect me-
teorological forecast is used. For example, for the forecast
issued on January 2017, the initial conditions for January
from all the years except 2017 are used while the meteo-
rological forecast is based on the year 2017. In the case of
the ESP Forecast experiment, the entire skill of the forecast
is contributed by the initial conditions whereas in the case of
revESP Forecast experiment, the entire skill is contributed by
meteorological forecasts. In a final experiment called the Cli-
matological Forecast, both the initial condition and the mete-
orological forecast are obtained using the leave-one-year-out
approach. This forecast acts as the lower benchmark as this
is entirely based on climatological information.

3.4 Forecast evaluation metrics

The ESP forecast is evaluated against the perfect forecast and
climatological forecast using the continuous ranked probabil-
ity score (CRPS) and the continuous ranked probability skill
score (CRPSS).

CRPS= CRPS(P,xa)=

∞∫
−∞

[P (x)−Pa (x) ]2dx (1)

CRPSS= 1−
CRPSForecast

CRPSReference
(2)

Here, P (x) is cumulative density function of the ensemble
forecast, whereas the Pa (x) is the cumulative density func-
tion of the observation (in this case, the perfect forecast). The
value of CRPS ranges from 0 (perfect) to +∞ (no skill) and
the values of CRPSS ranges from −∞ (no skill) to 1 (per-
fect). In case of CRPSS, climatology is used as the reference.
A value of 1 means perfect skills, value of 0 means no skills
compared to climatology and a negative value indicates that
the forecast is has less skills than the climatology.

We then further also compared the ESP and revESP by
comparing their relative mean squared errors (MSE) with
each other following Wood and Lettenmaier (2008).

RelativeMSE[ESP]=
MSE[ESP]
MSE[Clim]

(3)

A relative MSE close to 0 indicates a higher predictive
skill compared to climatology whereas a relative MSE close
to 1 indicates a poor predictive skill similar to that of clima-
tology.

4 Results and Discussion

4.1 Model calibration and validation

The WEB-DHM-S model was calibrated for the year 2011
and then validated for 2012–2014. The calibration process
involved tuning the soil parameters, the snow process param-
eters as well as the radar snowfall correction parameters. In
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Figure 3. Comparison of the WEB-DHM-S river discharge simula-
tion and observation. (a) Calibration (2011) and Validation (2012–
2014). (b) Entire simulation period (2008–2020).

general, the model showed a high accuracy as discussed in
Moiz et al. (2022). We further also validated the entire time
series of river discharge simulation using data from 2008–
2020. The model exhibited reasonable accuracy with a Nash
coefficient of 0.79 and a percentage BIAS of −12.02 %.

The model was also validated against point snow depth
observation (see Fig. 3c) and satellite snow cover (not shown
here), both of which were also reasonably simulated. Snow
depth at Kurobe can reach a maximum of around 4 m depth
and starts melting in April where it contributes to Kurobe
dam inflow. Most of this snow melts until the end of May.
Therefore, in these two months initial condition of snow is
very important for predicting snow melt runoff.

4.2 Long-range hydrometeorological forecasts

In all the experiments, forecasts are issued at the beginning of
every month with a lead-time of 3-months. In the case of ESP
forecast, for example, the initial condition is obtained using
actual meteorological forcings and running the model up to
the real-time (in this case, the time when the forecast is to be
issued). An example of the forecast issued on 1 May 2010 is
shown in Fig. 4.

From Fig. 4a it is quite evident that the use of initial condi-
tion leads to a much more reasonable forecast of point snow
depth as compared with climatology. In Fig. 4b while the
discharges at the beginning of the forecast are quite similar,
they quickly become very different over time. Here it can
be seen the ESP performs significantly better whose skill is
mainly attributed to the initial condition. This difference can

Figure 4. Comparison of ESP forecast with climatology and perfect
forecast for forecast issued on 1 May 2010.

lead to very different forecasted cumulative reservoir inflow
volumes at the end of the forecast horizon, which can have
consequence for reservoir operations. The month of May is
dominated by snowmelt runoff, so the initial condition of the
snowpack can play a very important role in contributing to
the skill of the forecast.

4.3 Comparison of ESP and climatology metrics

Figure 5 shows the CRPSS metric for the ESP forecasts av-
erage over 13 years and groups into four seasons (MAM
= March–April–May; JJA = June–July–August; SON =
September–October–November; DJF=December–January–
February) depending upon the time the forecast was issued.

In general, the ESP is more skilful than the climatology
for 8, 75, 11 and 10 d of lead time for MAM, JJA, SON and
DJF respectively. In the case of MAM, the skill quickly drops
after the first 8 d. In the case of JJA, the forecast remains
more skilful for a very long lead time. We expect that this is
largely due to the contribution of the forecast issued in May
and June, where the initial condition of snow play an im-

Proc. IAHS, 386, 217–222, 2024 https://doi.org/10.5194/piahs-386-217-2024



A. Moiz and A. Kawasaki: Long-range streamflow prediction 221

Figure 5. CRPSS for ESP forecast for different seasons.

Figure 6. Comparison of relative MSE for ESP and revESP.

portant role. Furthermore, here during the rainy season, the
soil moisture initial condition must also play a very important
role, to predict floods. The performance during SON and DJF
is very poor and we think that this is likely due to the reason
that the river discharge in this season is very low, since most
of the precipitation received is in the form of snow.

4.4 Comparison of ESP and revESP

Figure 6 shows the comparison of the relative MSE for ESP
and revESP. The climatology and perfect forecasts experi-
ments are conducted as benchmarks. Climatology is used to
calculate Ratio of MSE. Climatology has a Ratio of MSE
equal to 1, whereas perfect forecast has a ratio of MSE equal
to 0. ESP and revESP generally lie between these two bench-
marks. The revESP has a lower relative MSE compared with
ESP which is very close to 1.

However, the situation is quite different for the forecasts
issued in April, May, June, and July. Here, the relative MSE
for ESP is sometimes higher and sometimes comparable to
that of revESP. This means that for forecasts issued in these
months, the model initial conditions play an important role.
The decreasing (increasing) values of relative MSE for ESP
(revESP) in April and May are due to the reason that most
of the snow at Kurobe melts during these months, therefore
the snow initial condition is important in these months. Dur-
ing JJA some snow exists at higher elevations. Furthermore,
these months receive a lot of rainfall. Both of these factors
contribute to soil moisture. Therefore, in JJA the initial con-
dition of soil moisture in addition to snow is an important
contributor to the skill of ESP forecast.

5 Conclusions

In this paper, we explained the development of a long-
range (3-month) hydrometeorological prediction system for
a snowfed watershed in Japan, using the latest iteration of
WEB-DHM-S. We used 13-years of hindcast simulations to
determine the accuracy of these forecast and more specifi-
cally answer, whether initial condition play an important role
in contributing towards the skill of the forecasts. We found
that the use of initial conditions can lead to the forecasts
which are more skilful than climatology by 8–75 d of lead-
time depending upon the season. Highest increase in skills
was during the time when most of the snow melts. We believe
that this research can lead to the development of long-range
forecasting systems which can guide reservoir operators in
snowfed watersheds for effective water resources manage-
ment.

Data availability. JRA55 dataset is from Kobayashi et
al. (2015) and downloaded using the Data Integration and
Analysis System (DIAS) (https://diasjp.net/en, last access:
10 June 2021). Radar-AMeDAS dataset was also down-
loaded from DIAS (https://diasjp.net/en, last access: 9 Au-
gust 2021). Radar-AMeDAS can also be downloaded from
a publicly open database (http://database.rish.kyoto-u.ac.jp/
arch/jmadata/data/jma-radar/synthetic/original/, JMA, 2021).
AMeDAS data can be downloaded from JMA’s website
(https://www.data.jma.go.jp/gmd/risk/obsdl/index.php, JMA,
2020).
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