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Abstract. Flood risk models provide important information for disaster planning through estimating flood dam-
age to exposed assets, such as houses. At large scales, computational constraints or data coarseness leads to the
common practice of aggregating asset data using a single statistic (e.g., the mean) prior to applying non-linear
damage functions. While this simplification has been shown to bias model results in other fields, the influence of
aggregation on flood risk models has received little attention. This study provides a first order approximation of
such errors in 344 damage functions using synthetically generated depths. We show that errors can be as high as
40 % of the total asset value under the most extreme example considered, but this is highly sensitive to the level
of aggregation and the variance of the depth values. These findings identify a potentially significant source of
error in large-scale flood risk assessments introduced, not by data quality or model transfers, but by modelling
approach.

1 Introduction

With the increase in flood related disaster damages, the ex-
pansion of computation power, and the availability of global
data, the development and application of meso- and macro-
scale flood risk models has increased dramatically in the past
decade (Ward et al., 2015). These flood risk models are often
conceptualized as a chain of sub-models for the flood haz-
ard, exposure of assets, and vulnerability to flooding; with
each step bringing uncertainty (de Moel and Aerts, 2011).
Vulnerability modelling, the last step in the chain, is gen-
erally found to be the most uncertain component in micro-
and meso-scale models (de Moel and Aerts, 2011; Jongman
et al., 2012). These findings are supported by work compar-
ing modelled damages to those observed during flood events,
where large discrepancies are regularly found between differ-
ent models and against observations (Jongman et al., 2012;
McGrath et al., 2015). Further challenges are introduced
when such models are transferred to the macro-scale, where
many exposed assets are aggregated through averaging into
a single unit before vulnerability models are applied (Hall
et al., 2005; Ward et al., 2015; Sairam et al., 2021). This
process collapses heterogeneities within the aggregated unit

(like variable flood depth), and poses poorly understood chal-
lenges to the accuracy of flood risk models.

Such scaling issues are not unique to flood risk models.
Many fields find it convenient (or necessary) to simplify the
system under study by averaging or aggregating some vari-
able or computational unit (Denny, 2017). However, this as-
sumption that system response is unaffected by averaging,
is false for most real-world systems; a conundrum, widely
called “Jensen’s inequality” (Jensen, 1906) or “the fallacy of
the average” which can be formalized as:

g(x) 6= g(x) (1)

where g is a non-linear function and x is some response vari-
able. Applied to flood vulnerability models, which are almost
never linear (Gerl et al., 2016), Eq. (1) implies that aggre-
gating or averaging assets (e.g., buildings) introduces new
errors. It can be shown that the magnitude and direction of
such errors are related to the variance of the response vari-
able (σ 2

x ) and the local shape of the function (g′′(x)) (Denny,
2017).

Within a flood vulnerability model, flood damage func-
tions (f ) provide the mathematical relation between expo-
sure and vulnerability variables (e.g., flood depth) and esti-
mated flood damages (e.g., building repair costs) for a single
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asset. The most basic functions directly relate flood depth to
damage – so-called depth-damage curves widely attributed
to White (1945). Gerl et al. (2016) provides a comprehen-
sive meta-analysis of 47 references containing flood dam-
age functions found in the public literature. These functions
cover a wide range of geography and sector including 7 con-
tinents and 11 sectors for example. The majority of functions
identified were deterministic (96 %), multi-variable (88 %),
and expressed loss relative to the total value of the asset
(56 %). To provide a standardized library of these functions,
each was harmonized to an intrinsic or common set of indica-
tor variables leaving other unique indicators as default values
(e.g., inundation duration). Following such a harmonization,
Gerl et al. (2016) found significant heterogeneity in function
shape and magnitude between authors for supposedly sim-
ilar models. This partly explains the large discrepancies in
risk model results reported by others (Jongman et al., 2012;
McGrath et al., 2015).

Aggregation and scaling issues are rarely considered in
the flood risk model literature. Jongman et al. (2012) com-
pared results from six aggregated and two object-based as-
set models against observed damages from a 2002 flood in
Germany and a 2005 flood in the U.K.. Asset data was de-
veloped from a 100 m land cover grid, which required ad-
justing the two object-based models by 61 %–88 % to reflect
the average portion of building footprints within each grid
cell. Model performance was mixed between the two stud-
ies, with the aggregated models over-predicting by a factor
of two and object-based models under-predicting by 5 % on
average for the German case. For the U.K. case, all models
under-predicted.

In a recent large-scale study, Pollack et al. (2022) con-
structed a benchmark and aggregated analog models from
roughly 800 000 single family dwellings and eight 30 m res-
olution flood depth grids with return periods ranging from 2-
to 500-years. When only building attributes were aggregated,
a small negative bias was observed (−10 %) while when haz-
ard variables were also aggregated a large positive bias was
found (+366 %) for annualized damage. Given the spatial
correlation of building values and flood exposure found in
their study area, they conclude that bias would be difficult to
predict ex-ante.

In this paper we summarize work to improve our under-
standing of the effect of aggregation on a particular com-
ponent of flood risk models: the flood damage function. We
accomplish this by producing a first order approximation of
the potential aggregation error for a general flood risk mod-
els, the first attempt of its kind we are aware of. To provide
as broad an evaluation as possible, a library of 344 dam-
age functions are evaluated against a single indicator vari-
able: synthetically generated flood depth. These results are
then analyzed to elucidate the potential significance and be-
haviour of aggregation on flood risk models.

Table 1. Summary of flood damage models from Gerl et al. (2016)
showing the number of functions (f ) per model.

model id name f count

3 FLEMO 242
4 IKSE 2
6 MERK 5
7 MURL 2
12 Neyshabouri (2012) 2
16 HAZUS-MH 35
17 MCM 17
23 Luino et al. (2009) 1
27 Toth et al. (2008) 6
37 Budiyono et al. (2015) 24
42 Dutta et al. (2003) 3
44 DSM 5

2 Methods

To evaluate the sensitivity of flood damage functions to
the aggregation of input variables, a library of 344 damage
functions are evaluated against synthetically generated wa-
ter depths at various levels of aggregation. Statistics describ-
ing the difference between raw function outputs and the ag-
gregated analogues are then computed on each function and
each level of aggregation to describe the response of the func-
tion to aggregation.

2.1 Flood Damage Functions

For this study, we focus on direct tangible economic func-
tions for estimating the relative loss to buildings from flood
depth. From Gerl et al. (2016), 12 such models were identi-
fied, each composed of a collection of flood damage func-
tions (f ) with the primary independent variable as depth.
To simplify the analysis, each of these is discretized by any
secondary variables (i.e., variables other than flood depth)
to produce a collection of 344 simple functions for rela-
tive damage from flood depth as summarized in Table 1.
Each of these functions is monotonically increasing (i.e.,
RLi+1 ≥ RLi) and implemented in python as a lookup ta-
ble (with linear interpolation applied between discrete depths
(x) and their relative loss (RL) pairs). For out-of-range depth
values (x) (i.e., those that are greater or less than the most
extreme values provided in the lookup tables) either the max-
imum relative loss value (f [x] = RLmax) or a value of zero
are returned (f [x] = 0) following our understanding of com-
mon practice. In other words, the function implementation
caps the RL values to match those provided in the lookup
table.

2.2 Synthetic Depths Generation

Each of the 344 selected discrete functions have a distinct
shape, depth domain (from −1.22 to 10 m), and relative loss
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Figure 1. Relative loss vs. anchor depth (xb) for three example functions and three synthetic depth generation standard deviations (σ )
computed against the depth values and aggregation (s) described in the text. Shaded areas show the corresponding q95 and q5 for the RL
computed for each level of aggregation. Functions are from model 3, 3 and 37 from Table 1 for panel (a), (b), and (c) respectively.

domain (from 0.0 to 116, with a value greater than 100 indi-
cating damages more severe than the estimated replacement
value). In practice, each asset (e.g., house) would have its
flood damage calculated with a specific function and the ex-
posure variables (e.g., depth) sampled for each flood event.
Under aggregation, multiple assets would be collapsed to a
single node prior to function computation. The exposure (and
vulnerability) indicators of this collapsed asset are generally
computed through averaging of the original, singular assets.
To provide a comprehensive analysis of the full range of ex-
posure depths supported by each function, a range of depth
values are generated using a normal distribution and then
sampled and averaged according to the level of aggregation.

To generate the synthetic depth values, the independent
variable domain (depths) is discretized from 0.0 to 2.0 to
produce 30 anchor depth values (xb). Each of these xb val-
ues is used as the average or mean depth under evaluation,
with lower values representing shallower floods and higher
values (closer to 2.0) very deep floods. To represent the vari-
ance in depths within a group of assets for a given flood, raw
synthetic depth values are then randomly generated around
each xb by sampling 2000 points from three normal distri-

butions (N [σ = (0.1,0.55,1.0),µ= xb]). Higher variances
(σ 2) represent steeper terrain and water surface gradients,
while lower values represent flatter areas like a lowland
floodplain. These raw values are then aggregated by ran-
domly splitting the 2000 depth values into N12 groups of
size sj = (1,2,5,100) and computing the mean. In this way,
360 arrays of synthetic depth values covering a broad range
of flood magnitudes, variance, and levels of aggregation are
prepared.

2.3 Relative Loss Errors

Using each of the 360 synthetic depth arrays on each of the
344 functions, a set of relative loss arrays (RLxb,sj ,σ,f ) is
computed, each associated with an anchor depth value (xb),
a level of aggregation (s), a standard deviation (σ ) and a flood
damage function (f ). To compute the aggregation error po-
tential of each function under various flood conditions, arrays
are grouped by function (f ), standard deviation (σ ), and ag-
gregation level (s). For each of these groups, the mean of the
relative loss values is plotted against xb. Second, for each of
these four series, the area against the un-aggregated result is
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Figure 2. Relative loss error for three levels of aggregation (s) and three synthetic depth families (σ ) for a selection of the models described
in Table 1. Faint circles show each function (f ) while the bold circles show the function ensemble mean for that model.

calculated as:

esj ,σ,f =

∫
x=0

RL
[
x,s1,σ,f

]
−RL

[
x,sj ,σ,f

]
(2)

where e is the aggregation error potential and the integrals are
evaluated using the composite trapezoidal rule, a common
method for estimating the area under a curve by discretizing
into trapezoids (NumPy Developers, 2022).

3 Results and Discussion

Three example damage functions (f ) are shown in Fig. 1
along with the mean and two quantiles (q95 and q5) of the re-
sulting loss values computed under four levels of aggregation
against the generated depth values. These three damage func-
tions were selected to demonstrate typical behaviour present
in all functions. Looking from left-to-right, Fig. 1 shows how
large variances (σ 2) employed in the synthetic depth gener-
ation act to spread the resulting relative loss values. Work-
ing in a similar but opposite manner, large aggregations (s)
reduce the spread of relative loss values. This is intuitive if
we consider that the averaging employed in the aggregation
works like a filter to reduce variance.

A clock-wise rotation can also be seen in Fig. 1, where se-
ries with less aggregation (e.g., s = 0) have positive/negative

deviation from the left/right tails of the raw functions. This
can be explained by the treatment of out-of-range depth val-
ues (x). As explained above, when a synthetic depth value
with negative exceedance is calculated (i.e., less than the
minimum (x) provided in the lookup table), a relative loss of
zero is returned. Away from these x range limits (e.g., xb =
1.0), the normally distributed synthetic depths yield roughly
similar positive and negative residuals from the monotoni-
cally increasing functions, which balance during the aver-
aging. On the other hand, closer to the x range limits (e.g.,
xb = 0.0) the residuals become unbalanced as those x values
exceeding the range (e.g., xb < 0.0) lose their relation with
RL while those within range maintain the relation. At the
low end of the range (e.g., xb = 0), this phenomena produces
a bias negatively related to aggregation and positively related
at the high end (e.g., xb = 2.0). This is intuitive if we con-
sider the aggregated synthetic x values (i.e., s > 1) have had
their variance reduced (through averaging), meaning fewer
extreme x values and therefore the RL imbalance discussed
above is less severe with aggregation. Because the depth val-
ues considered here are generated with a normal distribution,
it is likely that some x values for low anchor depths (e.g.,
xb = 0.0) would be below ground in a real flood risk model
(some negative x values are realistic as buildings are typi-
cally elevated slightly above ground). In cases where such
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Figure 3. Aggregation error potentials calculated with Eq. (2) for each function (f ) of the models described in Table 1.

ground water exposure is ignored or negligible (the case of
most models), the bias around low anchor depths would be
smaller than what we report here. A similar, but weaker ar-
gument could be made for large xb values which traces back
to the suitability of a normal distribution for representing ex-
posure depths. This important issue was not investigated as
part of our first order approximation.

Figure 2 shows the error in relative loss as a function of xb
for two example models from Table 1, each containing a set
of damage functions. These models were selected to demon-
strate behaviour present in all models. This shows that the
sensitivity to aggregation errors varies by model or damage
function (f ). This is intuitive considering the diverse func-
tion shapes reported by Gerl et al. (2016). Looking at the
general increase in absolute error magnitude from top left to
bottom right of Fig. 2 suggests a positive relation with vari-
ance in depth values (σ 2) and the level of aggregation (s).
This aligns with our understanding of Jensen’s inequality if
we consider that larger variances (σ 2) and aggregation both
lead to a more severe compression of tail values about the
mean. Figure 2 also shows that errors can be significant, ap-
proaching 40 % relative loss for the most extreme case con-
sidered here. In contrast, when variance in depth values (σ 2)
is low, as in flat floodplains, the majority of functions have
relative loss errors less than 5 % for the most extreme level
of aggregation considered here (s = 100).

Examining the relation of error to xb, Fig. 2 suggests gen-
erally negative errors for small depths (xb < 1.0) and posi-
tive errors for larger depths (xb > 1.0). This can be explained
by the treatment of out-of-range depth values (x) and the
clock-wise rotation shown in Fig. 1. The implications of
this depth-dependent error could be significant for flood risk
analysis aimed at informing flood protection investment de-
cisions where a broad range of flood event magnitudes are
assumed to have roughly similar errors (IWR and USACE,
2017). However, the significance of these findings is limited
by our first order approach for generating synthetic depths
from a normal distribution, which may not represent real ex-
posure depths well.

To provide a simple metric for the 344 functions covered
in Table 1, Eq. (2) was used to compute the total area of
each error series (similar to what is shown in Eq. 2). The
resulting aggregation error potentials are shown in Fig. 3.
This shows that the sensitivity to aggregation errors varies
widely between models and even between damage functions
(f ) within the same model. This is intuitive considering the
diverse function shapes and the harmonization of variables
necessary to directly compare the different models. Further,
Fig. 3 shows the majority of models have mean error (e) val-
ues below zero, suggesting an overall negative bias across the
full depth domain.
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4 Conclusions

To better understand the potential and magnitude of errors
introduced through averaging of flood risk models, a novel
first order evaluation of 344 flood damage functions was per-
formed using synthetically generated depth data. While the
character and magnitude of aggregation errors will depend
on the specifics of a given flood risk model, the general ap-
proach applied here demonstrates that low-depth floods tend
to have negative errors while high-depth floods have positive
errors. Further, we demonstrate that overall, error tends to be
negative for the 344 damage functions considered.

The findings reported here provide useful information for
flood risk modellers evaluating the appropriateness and ex-
tent of aggregation to include in their models. For example,
in areas with high depth variance where models with large
aggregation error potential (e on Fig. 3) are to be applied,
aggregation should be minimized. While this can be diffi-
cult, minimizing aggregation can be achieved by construct-
ing damage models where assets (e.g., buildings) are treated
as individual elements within the model (rather than aggre-
gated elements). Finally, this work demonstrates the poten-
tial severity of aggregation errors and how poorly these are
understood, and therefore the need for further study.

Future work should evaluate the performance of the
normal distribution applied here to synthetically generate
depths. Also, a more generalizeable measure of curvature
(e.g., local derivative) could be explored to more clearly clas-
sify and communicate the aggregation error potential of dif-
ferent functions. By extending the first order approximations
developed here, the flood risk model domain could be seg-
regated into areas with more or less sensitivity to aggrega-
tion errors. In this way, the accuracy of large-scale flood risk
models could be improved without drastically increasing the
computational requirements.
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license: https://doi.org/10.5281/zenodo.10810421 (Bryant, 2024).

Data availability. Function library is provided in Gerl et al.
(2016).

Author contributions. SB prepared the manuscript, developed
the concept, performed the analysis and computation. BM and HK
reviewed the manuscript and supervised the work.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-

lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“ICFM9 – River Basin Disaster Resilience and Sustainability by
All”. It is a result of The 9th International Conference on Flood
Management, Tsukuba, Japan, 18–22 February 2023.

Acknowledgements. The authors thank Kai Schröter for partic-
ipating in early discussions and helping with the damage function
database. We would also like to thank the ICFM9 organizers for
both the conference and funding this publication.

Financial support. The research presented in this article was
conducted within the research training group “Natural Hazards
and Risks in a Changing World” (NatRiskChange) funded by the
Deutsche Forschungsgemeinschaft (DFG; grant no. GRK 2043/2).

Review statement. This paper was edited by Mohamed Rasmy
and reviewed by two anonymous referees.

References

Bryant, S.: cefect/2210_AggFSyn: 2024-03-12: PIAHS publication,
Zenodo [code], https://doi.org/10.5281/zenodo.10810421, 2024.

de Moel, H. and Aerts, J. C. J. H.: Effect of uncertainty in land use,
damage models and inundation depth on flood damage estimates,
Nat. Hazards, 58, 407–425, https://doi.org/10.1007/s11069-010-
9675-6, 2011.

Denny, M.: The fallacy of the average: on the ubiquity, utility and
continuing novelty of Jensen’s inequality, J. Experiment. Biol.,
220, 139–146, https://doi.org/10.1242/jeb.140368, 2017.

Gerl, T., Kreibich, H., Franco, G., Marechal, D., and Schröter,
K.: A Review of Flood Loss Models as Basis for Har-
monization and Benchmarking, PloS one, 11, e0159791,
https://doi.org/10.1371/journal.pone.0159791, 2016.

Hall, J. W., Sayers, P. B., and Dawson, R. J.: National-scale Assess-
ment of Current and Future Flood Risk in England and Wales,
Nat. Hazards, 36, 147–164, https://doi.org/10.1007/s11069-004-
4546-7, 2005.

IWR and USACE: Principles of Risk Analysis for Water Resources,
Tech. rep., IWR, USACE, 298 pp., https://hdl.handle.net/11681/
44744 (last access: 24 March 2024), 2017.

Jensen, J. L. W. V.: Sur les fonctions convexes et les inégalités en-
tre les valeurs moyennes, Acta mathematica, 30, 175–193, pub-
lisher: Springer, 1906.

Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D.,
Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P.
J.: Comparative flood damage model assessment: towards a Eu-
ropean approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752,
https://doi.org/10.5194/nhess-12-3733-2012, 2012.

Proc. IAHS, 386, 181–187, 2024 https://doi.org/10.5194/piahs-386-181-2024

https://doi.org/10.5281/zenodo.10810421
https://doi.org/10.5281/zenodo.10810421
https://doi.org/10.1007/s11069-010-9675-6
https://doi.org/10.1007/s11069-010-9675-6
https://doi.org/10.1242/jeb.140368
https://doi.org/10.1371/journal.pone.0159791
https://doi.org/10.1007/s11069-004-4546-7
https://doi.org/10.1007/s11069-004-4546-7
https://hdl.handle.net/11681/44744
https://hdl.handle.net/11681/44744
https://doi.org/10.5194/nhess-12-3733-2012


S. Bryant et al.: Aggregation Bias 187

McGrath, H., Stefanakis, E., and Nastev, M.: Sensitivity anal-
ysis of flood damage estimates: A case study in Frederic-
ton, New Brunswick, Int. J. Disast. Risk Re., 14, 379–387,
https://doi.org/10.1016/j.ijdrr.2015.09.003, 2015.

NumPy Developers: numpy.trapz – NumPy v1.26 Manual, https:
//numpy.org/doc/stable/reference/generated/numpy.trapz.html
(last access: 12 March 2024), 2022.

Pollack, A. B., Sue Wing, I., and Nolte, C.: Aggregation
bias and its drivers in large-scale flood loss estimation: A
Massachusetts case study, J. Flood Risk Manage., 15, 4,
https://doi.org/10.1111/jfr3.12851, 2022.

Sairam, N., Brill, F., Sieg, T., Farrag, M., Kellermann, P.,
Nguyen, V. D., Lüdtke, S., Merz, B., Schröter, K., Voro-
gushyn, S., and Kreibich, H.: Process-Based Flood Risk As-
sessment for Germany, Earth’s Future, Wiley Online Library, 9,
https://doi.org/10.1029/2021EF002259, 2021.

Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P.,
De Groeve, T., Muis, S., de Perez, E. C., Rudari, R., Trigg,
M. A., and Winsemius, H. C.: Usefulness and limitations of
global flood risk models, Nat. Clim. Change, 5, 712–715,
https://doi.org/10.1038/nclimate2742, 2015.

White, G. F.: Human Adjustment to Floods. A Geographical Ap-
proach to the Flood Problem in the United States, Ph.D. thesis,
The University of Chicago, Chicago, 238 pp., 1945.

https://doi.org/10.5194/piahs-386-181-2024 Proc. IAHS, 386, 181–187, 2024

https://doi.org/10.1016/j.ijdrr.2015.09.003
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html
https://doi.org/10.1111/jfr3.12851
https://doi.org/10.1029/2021EF002259
https://doi.org/10.1038/nclimate2742

	Abstract
	Introduction
	Methods
	Flood Damage Functions
	Synthetic Depths Generation
	Relative Loss Errors

	Results and Discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

