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Abstract. Flood forecasting plays a crucial role in supporting decision-making for flood management. In ad-
dition to conceptual and physical-based models, the data-driven models have garnered increasing attention in
recent years. The proposed model in this study employs LSTM networks, Encoder-Decoder framework, as well
as feedback and attention mechanism to effectively utilize diverse observed data and future rainfall as inputs for
multiple time steps flood forecasting. The accuracy and reliability of the model have been validated across case
studies in multiple watersheds in China. The results demonstrate the high performance of the LSTM-based flood
forecasting model. Meanwhile, the efficacy of both the feedback mechanism and attention mechanism has been
validated in the domain of flood prediction.

1 Introduction

The artificial neural network (ANN) stands out as the most
widely adopted algorithm among data-driven flood forecast-
ing models, showcasing exceptional performance and re-
markable stability. After years of development, the simple
feedforward network has evolved into sophisticated architec-
tures such as radial basis function (RBF) network and recur-
rent neural network (RNN) (Xiang et al., 2020; Kao et al.,
2020), among which, the RNN with gating mechanism, such
as the LSTM network (Hochreiter and Schmidhuber, 1997),
has shown great performance in the field of series prediction.
The structure of RNN can effectively utilize the information
inherent in time series data, making it highly suitable for pre-
dicting rainfall and runoff series characterized by significant
autocorrelation and cross-correlation.

Based on the CAMELS dataset (Addor et al., 2017; New-
man et al., 2015), the LSTM network has been employed
to construct runoff prediction models for multiple water-
sheds in the United States (Kratzert et al., 2018). Thapa et
al. (2020) developed an LSTM-based discharge model driven

by snowmelt in a Himalayan basin, which utilized MODIS
snow images and remotely sensed meteorological data as in-
put variables. The LSTM network and seq2seq architecture
have been utilized to construct flood forecasting models for
Clear Creek and Upper Wapsipinicon River in the United
States, demonstrating the effective application of the LSTM-
seq2seq model in short-term flood forecasting (Xiang et al.,
2020). The LSTM network and Encoder-Decoder framework
have been adopted to achieve multi-step prediction, provid-
ing a maximum lead time of 6 h for reservoir inflow predic-
tion (Kao et al., 2020). The LSTM-based flood forecasting
model developed by Dazzi et al. (2021) utilized the observed
upstream and downstream water levels as inputs to accurately
predict the flood stages of critical gauge stations.

In this paper, a flood forecasting model based on the
LSTM network, Encoder-Decoder framework, as well as the
feedback and attention mechanism are proposed to achieve
multiple time steps flood forecasting. Three representative
watersheds with distinct climate and underlying surface char-
acteristics are selected to conduct case studies to validate the
performance of the proposed model.
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Figure 1. Internal structure of LSTM cell.

2 Methodology

2.1 LSTM-based flood forecasting model

The internal structure of the LSTM cell is illustrated in
Fig. 1, encompassing three gates for regulating information:
the “forget gate”, “input gate”, and “output gate”.

The information processing in “forgetting gate” is shown
in Eq. (1), which mainly controls the information to be dis-
carded in the internal state.

z
(t)
f = σ

(
Wf

[
h(t−1)

;x(t)
]
+ bf

)
(1)

In which, σ is sigmoid function, W∗ is weight matrix, b∗ is
bias weight, h(t−1) is the hidden state of previous time step,
x(t) is the input at time t .

The computation of vectors in the “input gate” is illus-
trated in Eq. (2), which determines the novel information in-
corporated into the internal state at each time step. The candi-
date states are obtained through a feedforward network layer
using the “tanh” function as the activation function, as de-
picted in Eq. (3).

z
(t)
i = σ

(
Wi

[
h(t−1)

;x(t)
]
+ bi

)
(2)

c̃(t)
= tanh

(
Wc̃

[
h(t−1)

;x(t)
]
+ bc̃

)
(3)

The “output gate” process, depicted in Eq. (4), governs the
transmission of information from the internal state to the hid-
den state at each time step. Nonlinear transformation is also
essential in the output process and can be achieved through
activation functions, as illustrated in Eq. (5).
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The proposed forecasting model is referred to as LSTM-
DSA, with DSA representing the dual stage attention mecha-
nism. The architectural depiction of LSTM-DSA can be ob-
served in Fig. 2. The dual stage attention operates on both the

Figure 2. Architecture of the LSTM-DSA model.

Encoder and Decoder components individually. The Encoder
part utilizes the attention mechanism to enable adaptive se-
lection among multiple driving factors, thereby facilitating
the utilization of point rainfall data as input instead of area
rainfall data. In the Decoder part, the attention mechanism
assigns weight coefficients to the hidden state of the encoder
at each time step. Additionally, the model encompasses a
feedback mechanism within the Decoder part to utilize fu-
ture rainfall data as additional input.

2.2 Benchmark model

The forecasting model based on Encoder-Decoder frame-
work proposed by Kao et al. (2020) is utilized as the bench-
mark model, named as LSTM-ED, whose architecture is il-
lustrated in Fig. 3.

2.3 Evaluation metrics

The model performance is assessed based on the simulated
peak value, peak occurrence time, and flood process. The
evaluation metrics include the relative error of the peak, error
in peak occurrence time, and Nash efficiency coefficient.

The relative error of the peak is calculated as follows:

δRPE =
Qsim

max−Q
obs
max

Qobs
max

× 100% (6)
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Figure 3. Architecture of the benchmark model.

In which, Qsim
max (m3 s−1) and Qobs

max (m3 s−1) are the peak
value of the simulated and the observed sequence, respec-
tively.

The computation of the peak time error is as follows:

1PTE = T
sim

peak− T
obs

peak (7)

Where, T sim
peak (h) is the peak occurrence time of the simulated

sequence and T obs
peak (h) is the peak occurrence time of the

observed sequence.
Equation (8) shows the computation of the Nash efficiency

coefficient, which quantifies the overall discrepancy between
the simulated and observed sequence.
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)2 (8)

In which, Qobs
t and Qsim

t represent the value of the observed
and simulated sequence, respectively. Q̄obs is the mean value
of the observed sequence.

3 Study Watersheds and Data

In order to comprehensively assess the performance of the
proposed model, we carefully select three watersheds as
study areas, each characterized by distinct climatic and ge-
omorphic features. The three watersheds are situated within
Shaanxi Province, China, and boast well-maintained rain
gauges and hydrological stations, along with an extensive
collection of observational data. The basic information the
study watersheds is shown in Table 1, and the locations are
shown in Fig. 4.

4 Experiments

4.1 Model inputs and outputs

The input steps of the LSTM-based models for the three wa-
tersheds are determined as 3, 9 and 9 h by analysing the ACF

Table 1. Basic information of the study watersheds.

Watershed Area Rainfall Data Flood
(km2) stations period events

Xichuan 717.43 5 1971–2013 35
Bahe 1605.72 11 1970–2015 160
Yuehe 2821.65 14 1962–2014 139

Figure 4. Locations of the study watersheds.

and PACF of the rainfall and runoff data comprehensively
as well as conducting preliminary modelling analysis. The
inputs and outputs of each flood forecasting model are illus-
trated in Table 2.

4.2 Data pre-processing and sample division

The linear normalization method is employed for pre-
processing, as indicated in Eq. (9), to account for the dis-
parities in dimensions and scales between rainfall and runoff
data. This approach ensures improved accuracy and conver-
gence speed of the model.

xnorm =
x− xmin

xmax− xmin
(9)

The sample set is constructed using normalized rainfall and
runoff data. Firstly, 20 % of all flood events are randomly
selected as testing events. Secondly, the remaining 80 % of
the events are sliced according to input and output steps to
generate samples, from which 10 % are randomly chosen as
validation set. Finally, the remaining samples constitute the
training set. Table 3 shows the number of samples in each
set.
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Table 2. Model inputs and outputs.

Watershed Model Inputs Outputs

Xichuan LSTM-ED Point rainfall data and runoff data from T −2 to T , area
rainfall data from T + 1 to T + 6

Runoff data from T + 1
to T + 6

LSTM-DSA

Bahe LSTM-ED Point rainfall data and runoff data from T −8 to T , area
rainfall data from T + 1 to T + 6LSTM-DSA

Yuehe LSTM-ED Point rainfall data and runoff data from T −8 to T , area
rainfall data from T + 1 to T + 6LSTM-DSA

Table 3. Sample set information.

Watershed Total Training Testing Training Validation
number events events samples samples

Xichuan 35 28 7 306 35
Bahe 160 128 32 4881 543
Yuehe 139 112 27 4770 523

Table 4. Hyperparameters of models.

Watershed Model Number Batch
neurons size

Xichuan LSTM-ED 16; 16 64
LSTM-DSA 16; 32 64

Bahe LSTM-ED 16; 16 256
LSTM-DSA 16; 32 512

Yuehe LSTM-ED 16; 16 256
LSTM-DSA 16; 32 512

4.3 Settings and training

The forecasting model is constructed based on the Keras in
Python, with a single-layer LSTM utilized for both the En-
coder and Decoder layer, while a full connection layer serves
as output layer. The “MSE”, “Adam” and “ReLU” are se-
lected as loss function, optimizer and activation function, re-
spectively. The other hyperparameters of the model are de-
termined through trial calculations with the loss function as
indicators, wherein the number of neurons and batch size are
optimized using powers of 2, which are presented in Table 4.

5 Results and Discussion

The evaluation metric distributions of the prediction results
for each model are depicted in Figs. 5–7 respectively. The
predicted hydrographs for typical flood events in each water-
shed are illustrated in Figs. 8–10.

For Xichuan watershed, the Nash efficiency coefficient
and relative error of flood peak significantly deteriorate when
the prediction step exceeds 3 h. Overall, the estimations of

Figure 5. Metrics distribution for models in Xichuan.

Figure 6. Metrics distribution for models in Bahe.

Figure 7. Metrics distribution for models in Yuehe.
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Figure 8. Results for the “19910610” event in Xichuan.

Figure 9. Results for the “19860909” event in Bahe.

Figure 10. Results for the “20100718” event in Yuehe.

flood peaks are slightly lower than the observed value. The
performance of the LSTM-DSA model, meanwhile, sur-
passes that of the LSTM-ED model.

For Bahe watershed, the performances of both models de-
crease with the growing of prediction step. For flood peaks,
the predicted values are higher than the observed one. The
evaluation metrics show improvement with the inclusion of
future rainfall data.

The metrics distributions in Yuehe watershed exhibit a
comparable phenomenon. The prediction accuracy of both
models decreases as the prediction step extends. The estima-
tions of flood peaks are lower than the observed value. In-
corporating feedback and a dual-stage attention mechanism
enhances the model performance.

The experiments reveal that the performance of all mod-
els has exhibited varying degrees of decline as the prediction
step extends. The attenuation of information in the input data
is believed to contribute to this portion of the prediction er-

ror. This phenomenon has been effectively mitigated through
the implementation of the feedback mechanism. Overall, the
performance of the LSTM-DSA model is greatly enhanced
by incorporating feedback and a dual-stage attention mecha-
nism, surpassing that of the LSTM-ED model. The inclusion
of the attention mechanism has significantly enhanced pre-
diction accuracy for the Bahe and Yuehe watersheds, whereas
its impact on the Xichuan watershed is less pronounced, sug-
gesting that the attention mechanism proves more effective
in larger-scale watersheds.

Although we employ a sophisticated model structure, ac-
curate predicting certain floods remains challenging. We be-
lieve this error can be attributed to two factors. Firstly, the
input of each model solely relies on rainfall and runoff data
without considering other relevant variables. The informa-
tion contained in the input data is insufficient for precise
flood prediction. Secondly, there is still room for improve-
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ment in optimizing the model, refining the loss function, ad-
justing batch size, and fine-tuning the hyperparameters.

6 Conclusions

The paper introduces the LSTM-DSA, a dual-stage attention-
based LSTM network for multiple time steps flood forecast-
ing. Three representative watersheds are selected as study
areas to access the model performance. The experiment re-
sults are evaluated, and the sources of prediction errors are
analysed. In summary, the proposed model exhibits a signifi-
cantly high level of accuracy in predicting floods within dis-
tinct prediction steps, demonstrating its exceptional predic-
tive capability. The efficacy of both the feedback mechanism
and attention mechanism has also been validated in the do-
main of flood prediction.

Code and data availability. The code is avail-
able in Github (https://github.com/Vingttrois/
Flood-foresting-model-based-on-LSTM.git,
last access: 7 March 2024) and Zenodo
(https://doi.org/10.5281/zenodo.10791419, Wang, 2024).

The data are available upon request (wangfan@iwhr.com).

Author contributions. FW established the forecasting model and
wrote the text. WW, WB and WL took care of the data processing.
DZ revised the results and the text.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“ICFM9 – River Basin Disaster Resilience and Sustainability by
All”. It is a result of The 9th International Conference on Flood
Management, Tsukuba, Japan, 18–22 February 2023.

Acknowledgements. This work is supported by the Belt and
Road Special Foundation of the National Key Laboratory of Wa-
ter Disaster Prevention (Grant No. 2021491511).

Financial support. This research has been supported by the State
Key Laboratory of Hydrology-Water Resources and Hydraulic En-
gineering (grant no. 2021491511).

Review statement. This paper was edited by Mamoru Miyamoto
and reviewed by two anonymous referees.

References

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Dazzi, S., Vacondio, R., and Mignosa, P.: Flood Stage
Forecasting Using Machine-Learning Methods: A Case
Study on the Parma River (Italy), Water, 13, 1612,
https://doi.org/10.3390/w13121612, 2021.

Hochreiter, S. and Schmidhuber, J.: Long short-
term memory, Neural Comput., 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Kao, I. F., Zhou, Y. L., Chang, L. C., and Chang, F. J.: Exploring
a Long Short-Term Memory based Encoder-Decoder framework
for multi-step-ahead flood forecasting, J. Hydrol., 583, 124631,
https://doi.org/10.1016/j.jhydrol.2020.124631, 2020.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger,
M.: Rainfall–runoff modelling using Long Short-Term Mem-
ory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022,
https://doi.org/10.5194/hess-22-6005-2018, 2018.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L.
E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J.
R., Hopson, T., and Duan, Q.: Development of a large-sample
watershed-scale hydrometeorological data set for the contiguous
USA: data set characteristics and assessment of regional variabil-
ity in hydrologic model performance, Hydrol. Earth Syst. Sci.,
19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.

Thapa, S., Zhao, Z. B., Li, B., Lu, L., Fu, D. L., Shi, X. F., Tang,
B., and Qi, H.: Snowmelt-Driven Streamflow Prediction Using
Machine Learning Techniques (LSTM, NARX, GPR, and SVR),
Water, 12, 1734, https://doi.org/10.3390/w12061734, 2020.

Wang, F.: Vingttrois/Flood-foresting-model-based-
on-LSTM: V1.0.0 (V1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.10791419, 2024.

Xiang, Z. R., Yan, J., and Demir, I.: A Rainfall-Runoff
Model With LSTM-Based Sequence-to-Sequence
Learning, Water Resour. Res., 56, e2019WR025326,
https://doi.org/10.1029/2019wr025326, 2020.

Proc. IAHS, 386, 141–146, 2024 https://doi.org/10.5194/piahs-386-141-2024

https://github.com/Vingttrois/Flood-foresting-model-based-on-LSTM.git
https://github.com/Vingttrois/Flood-foresting-model-based-on-LSTM.git
https://doi.org/10.5281/zenodo.10791419
https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.3390/w13121612
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.jhydrol.2020.124631
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.5194/hess-19-209-2015
https://doi.org/10.3390/w12061734
https://doi.org/10.5281/zenodo.10791419
https://doi.org/10.1029/2019wr025326

	Abstract
	Introduction
	Methodology
	LSTM-based flood forecasting model
	Benchmark model
	Evaluation metrics

	Study Watersheds and Data
	Experiments
	Model inputs and outputs
	Data pre-processing and sample division
	Settings and training

	Results and Discussion
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

