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Abstract. Large scale modelling is becoming increasingly important in hydrology, particularly to characterize
and quantify changes in the hydrological regime, whose drivers are typically large-scale phenomena, up to the
global scale (e.g., climate change). This can be done with distributed models by estimating spatially consistent
model parameters i.e. parameters having a functional relationship with catchment characteristics. In this study
we adopt the newly developed PArameter Set Shuffling (PASS) approach, based on a machine learning decision
tree algorithm, for the regional calibration of the TUWmodel over North-Western Italy. The method exploits
observed patterns of locally calibrated parameters and catchment (climatic and geomorphological) descriptors,
to derive functional relationships between the variables. The calibration procedure is performed by including
snow cover information, as captured by MODIS datasets, in the model efficiency function. The results show that
the PASS regionalization procedure allows to obtain very good regional model efficiencies, without significant
loss of performance when moving from training to test catchments and from calibration to verification period,
confirming the robustness of the methodology. We also highlight that using snow information in the calibration
procedure is helpful to obtain spatially consistent model parameters for this study area. In the spirit of “obtaining
good results for the right reasons”, this should be a preferred approach when performing the regional calibration
of distributed hydrologic models over mountainous regions.

Keywords. UPH 19; distributed hydrological modelling; parame-
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1 Introduction

One of the main challenges of hydrological modelling at the
large scale is the estimation of spatially distributed model pa-
rameters, which are consistent with climatic and geomorpho-
logic features of the territory, according to a process-based
approach (Archfield et al., 2015; Clark et al., 2016; Gupta et
al., 2014; Mizukami et al., 2017; Paniconi and Putti, 2015).
The goal is to obtain parameter sets for each gridded element

or hydrologic unit having the same functional relationship
with climatic and geomorphological variables. Many studies
dealt with parameters regionalization techniques, in particu-
lar within the context of runoff prediction in ungauged basins
(e.g., Blöschl et al., 2013; Merz and Blöschl, 2004; Parajka
et al., 2013; Seibert, 1999; Troch et al., 2003). An innova-
tive approach was introduced by Merz et al. (2020), with the
idea of using machine learning based algorithms to derive re-
lationships between locally calibrated parameters and catch-
ment descriptors, in order to predict parameters in a spatially
distributed mode. The procedure, called PArameter Set Shuf-
fling (PASS), provides good results for plain areas like Ger-
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Figure 1. Stream gauges (red points), catchments boundaries
(black lines) and pixels with meteorological inputs (blue cells) over
Piemonte and Valle d’Aosta. The background represents mean ele-
vation (m a.s.l.).

many but, so far, it has not found application in other regions.
This work presents the PASS approach in a more complex
environment like the Alpine Region, by integrating snow in-
formation in the regionalization procedure.

2 Data and Methods

Data from the stream gauge network managed by
the environmental protection agency of the Piemonte
Region, in North-Western Italy, are used (Stream-
flow data, https://www.arpa.piemonte.it/rischinaturali/
accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/
banca-dati-idrologica.html, last access: 31 January 2023).
The study area is characterized by a range of topographical
elevations and a temperate continental climate, but con-
ditions are not uniform in space. In the Alps, a tendency
towards more humid conditions prevails, while the central
area is characterized by lower annual precipitation and
higher temperatures.

Precipitation [mm] and mean air temperature [°C] data
are provided by a gridded dataset, obtained by interpolation
of daily observations. These observations are taken from a
dense network of meteorological stations and cover the pe-
riod from 1957 up to the present day (Optimal Interpola-
tion (OI) Dataset, http://www.arpa.piemonte.it/rischinaturali/
tematismi/clima/confronti-storici/dati/dati.html, last access:
31 January 2023; Arpa Piemonte). The study domain con-
sists in total of 305 pixels of size 0.125°× 0.125° (Fig. 1).
Temperature data are used for the calculation of the poten-
tial evapotranspiration, by using the Blaney-Criddle equa-

tion based on the FAO procedure. A digital elevation model
(DEM) at 90 m resolution (Digital elevation model, http://
www.earthenv.org/, last access: 31 January 2023) and catch-
ment boundaries for 197 catchments are also considered.
Snow cover is mapped by combining MODIS products from
Terra (MOD10A1) and Aqua (MYD10AQ) satellites, and in
particular daily maps of the Normalized Difference Snow In-
dex (NDSI) at 500 m spatial resolution. NDSI values larger
than 40 are identified as snow. The combination is performed
to reduce the effect of clouds; pixels which are classified as
clouds or missing in Terra (NDSI> 100), are replaced by
pixels from Aqua if these are classified as snow covered or
snow free. The percentage of snow pixels in each grid cell of
Fig. 1 is counted and the value is retained if the percentage
of clouds is lower than 60 %. In this study, 79 catchment de-
scriptors are used to infer regionalization rules, divided into 5
categories: climate (precipitation and temperature) statistics,
calculated from the OI dataset; the 27 ETCCDI indices (http:
//etccdi.pacificclimate.org/list_27_indices.shtml, last access:
31 January 2023); morphological descriptors obtained from
the digital elevation model (referred to elevation, slope and
aspect); land-use classes derived from the Corine Land Cover
dataset (2018) and a series of soil characteristics, obtained
from the Harmonized World Soil Database.

The relationship between catchment descriptors and
model parameters is established using decision trees (rpart R
function). The PASS procedure is applied together with the
TUWmodel (Appendix of Parajka et al., 2007), which fol-
lows the structure of the HBV model (Bergström, 1995). The
algorithm used for local calibration is the differential evo-
lution (DEoptim R package), which implements the global
optimization of a real-valued function of a real-valued pa-
rameter vector (Mullen et al., 2011). We consider as model
efficiency function the arithmetic average of two quantities:

– the Kling-Gupta Efficiency (KGE) for discharge:

1−

√
(r − 1)2

+
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)2
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(
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where r is the linear correlation coefficient between ob-
served and simulated discharge, CVsim/CVobs is the ra-
tio between the coefficients of variation of simulated
and observed discharges, µsim/µobs is the ratio between
the means of simulated and observed discharges.

– a Snow Cover Efficiency, which is given by the follow-
ing formula:

SC= 1−
1

n ·N

n∑
1

(
N∑
1

|SCsim−SCobs|

)
whereN is the number of days, n is the number of cells,
SCsim is 1 if the simulated snow water equivalent (SWE)
exceeds 1 mm and 0 otherwise, and SCobs is 1 if the %
of snow pixels within the cell is greater than 10 % and 0
otherwise.

Proc. IAHS, 385, 65–69, 2024 https://doi.org/10.5194/piahs-385-65-2024

https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-idrologica.html
https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-idrologica.html
https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-idrologica.html
http://www.arpa.piemonte.it/rischinaturali/tematismi/clima/confronti-storici/dati/dati.html
http://www.arpa.piemonte.it/rischinaturali/tematismi/clima/confronti-storici/dati/dati.html
http://www.earthenv.org/
http://www.earthenv.org/
http://etccdi.pacificclimate.org/list_27_indices.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml


M. Pesce et al.: Regional multi-objective calibration for distributed hydrological modelling 67

Figure 2. (a) Non exceedance cumulative distribution function of model efficiencies (ME= 0.5 ·KGE+ 0.5 ·SC) during the calibration
period: “train_cal” shows MEs obtained by using locally calibrated lumped parameters for 76 training catchments, “test_cal” shows MEs
obtained by using locally calibrated lumped parameters for 28 test catchments, “train_reg” shows MEs obtained by running the model with
predicted distributed parameters for 76 training catchments, “test_reg” shows MEs obtained by running the model with predicted distributed
parameters for 28 test catchments. (b) Non exceedance cumulative distribution function of model efficiencies (ME= 0.5 ·KGE+ 0.5 ·SC)
during the verification period. The continuous lines represent the mean model efficiency, while the dashed lines represent the 10th and 90th
percentiles of model efficiencies for 30 parameter sets. (c) 30 normalized parameter sets found by local calibration for the Agogna river
catchment at Momo, North-Western Italy. (d) 30 normalized parameter sets found by regional calibration for the Agogna river catchment at
Momo, North-Western Italy.

The model efficiency is so defined:

ME= 0.5 ·KGE+ 0.5 ·SC

From the entire database, only stations having discharge data
over the period 2000–2020 are considered for the analysis
(104 stations). We split the timeseries into a calibration pe-
riod (2010–2020) and a verification period (2000–2010). We
perform the local calibration over the 104 catchments; from
this set, only catchments with at least 5 parameter sets hav-
ing local model efficiency (ME)> 0.75 and having a catch-
ment area< 1000 km2 are used for the training of PASS, fol-
lowing the assumptions of the method (Merz et al., 2020).
These are the so called training catchments. For these sites,
the best 30 parameter sets are used for running the region-
alization. The remaining catchments, called test catchments,
are instead used for validation.

3 Results and discussion

The results for the calibration period (2010–2020) and the
verification period (2000–2010) are shown in Fig. 2a and b.
Considering the calibration period, while the medians of the
mean performances of training and test catchments in local
calibration (“train cal” and “test cal”, respectively) are almost
identical, applying the regionalization procedure, the median

of MEs of regionally predicted distributed parameters sets
for the training catchments (“train reg”) is 0.785, and the me-
dian regional efficiency for the test catchments (“test reg”) is
0.700.

When moving to the verification period (2000–2010), the
local model efficiencies have a substantial decrease. The me-
dian of regionally distributed MEs for training catchments
decreases from 0.785 to 0.740, while the median of region-
ally distributed MEs for test catchments increases from 0.700
to 0.760. In general, we observe that the medians of re-
gional MEs for training and test catchments are very close
and the regional performance is not significantly degraded
when moving from the calibration to the verification period.
This confirms the robustness of the methodology in parame-
ter estimation across spatial and temporal scales. In Fig. 2c
and d, examples of normalized locally calibrated and region-
ally lumped calibrated parameter sets for the Agogna River
at Momo are shown. Parameters found by regional calibra-
tion show a much smaller spread compared to locally cali-
brated parameters. As found in Merz et al. (2020), also for
this Italian dataset regionalization reduces the effect of pa-
rameter equifinality.

Observing the maps of distributed model parameters, they
appear to be highly consistent with the climatic and geomor-
phological features of the region; in particular snow param-
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Figure 3. Regional maps of distributed TUWmodel parameters obtained with PASS. The color indicates the mean value of the parameter
among 30 regionalizations.

eters (SCF, DDF, Tr, Ts, Tm) seem to be in accordance with
the three different geographical areas which characterize the
region: the Alpine range on the West and North, the Apen-
nines on the South and the Po River Valley (Fig. 3).

4 Conclusions

The results of this study indicate that the PASS procedure
can be efficiently applied over the Alpine Region, with sat-
isfactory results, also by taking advantage of snow cover in-
formation for the calibration and validation of the model. The
model efficiencies for train catchments don’t decrease signif-
icantly when moving from calibration to the verification pe-
riod and actually for test catchments an increase is observed.
This confirms the robustness of the procedure in the param-
eter estimation over different spatial and temporal domains.
Overall, the results for this study area are in line with what
has already been found in Merz et al. (2020). The spatial dis-
tribution of the parameters is consistent with the climatic and
geomorphological characteristics of the region and this con-
firms that parameters are controlled by these variables. Fol-
lowing a process-based approach, the use of snow informa-
tion can be crucial for a good model representation of the
processes. This will allow to get “right results for the right
reasons”, which is of particular importance in hydrology, es-

pecially for large-scale distributed modelling studies which
require ungauged streamflow prediction.

Data availability. Precipitation, temperature and daily discharge
data are freely available on the ARPA Piemonte website (see Sect. 2
for further information). The other types of data can be provided by
the corresponding author upon request.
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