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Abstract. Reference evapotranspiration (ET0) is an essential parameter for hydrological modeling, irrigation
planning and for studying the impacts of climate change on water resources. The Penman–Monteith method is
recommended for estimating ET0 under all climatic conditions, but its application is limited in regions where
data is difficult to access. The alternative is to use methods that incorporate fewer climatic parameters. The ob-
jective of this work is to evaluate twenty alternative methods using few climate parameters of estimating ET0
and to calibrate/validate the best ones in order to adapt them to the climatic context of the main hydrosystems of
Senegal: Senegal, Gambia and Casamance river basins. The KGE and the PBIAS were used to evaluate the per-
formance of the methods. The results show that after calibration/validation the methods of Trabert, Hargreaves,
Hargreaves & Samani, Trajkovic and Oudin are the best on for the estimation of the reference evapotranspiration
in the Senegal, Gambia and Casamance River Basins.

Keywords. UPH1; SDG6; Reference evapotranspiration; Senegal;
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1 Introduction

The estimation of evapotranspiration is a major difficulty in
the context of developing countries. This is generally ex-
plained by the difficulty of accessing the climatic data nec-
essary for its estimation and the low density of measurement
stations. To overcome this, reanalysis data can be an alterna-

tive to often incomplete observed data. These data give the
opportunity to calculate the evapotranspiration with several
methods. The latter vary according to the climatic parameters
that they integrate. A distinction is made between aerody-
namic methods according to which evapotranspiration is pro-
portional to wind speed and saturation deficit (Dalton, 1802),
methods based on temperature (Hargreaves, 1975) and solar
radiation (Makking, 1957) and those based on which com-
bine several climatic variables (Penman, 1948; Monteith,
1965). These methods make it possible to estimate the refer-
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ence evapotranspiration (ET0) and their performance varies
according to the geographical areas (Djaman et al., 2015).
Therefore, it is important to evaluate them before using them
in a specific context. Moreover, even after evaluation, these
methods must be calibrated in order to adapt them to the lo-
cal climatic context other than the original climates under
which these models were developed. Several studies around
the world (Bogawski and Bednorz, 2014; Valipour, 2015;
Djaman et al., 2015; Ndiaye et al., 2020) have focused on
the evaluation of different ET0 estimation methods. In the
Senegal River Basin, Ndiaye et al. (2020) evaluated the per-
formance of twenty alternative methods for estimating ET0.
Their results showed that the best methods retained after cal-
ibration/validation: Valiantzas 2, Trabert, Valiantzas 3 and
Hargreaves and Samani. This work aims to expand the study
by Ndiaye et al. (2020) on the other watersheds of Sene-
gal (Gambia and Casamance) in order to evaluate alternative
methods using few climate parameters of estimating ET0 on
the main hydrosystems of Senegal.

2 Material and methods

2.1 Study area

The Senegal, Gambia and Casamance river basin constitute
the main hydrosystems of the Senegalese territory (Fig. 1).
The Senegal and Gambia rivers have their source in the Fouta
Djallon at an altitude of 1150 m and drain respective areas
of more than 300 000 and 77 100 km2, respectively (Ndiaye
et al., 2020). The Senegal river basin extends into Senegal,
Guinea, Mauritania and Mali and is managed by the Organi-
zation for the Development of the Senegal River. The Gam-
bia river covers parts of Senegal, Gambia and Guinea to-
gether with Guinea-Bissau which constitute the Organization
for the Development of the Gambia River. The Casamance
basin extends over an area of 20 150 km2 and is located al-
most entirely in Senegalese territory (Dacosta, 1989). From
a climatic point of view, these three hydrosystems extend
over three climatic zones: Guinean (average annual rainfall>
1500 mm); South Soudanian (1000< rainfall< 1500 mm);
North Sudanian (500< rainfall< 1000 mm) and Sahelian
(rainfall< 500 mm). The water resources of these three hy-
drosystems are used for the development of agriculture, hy-
droelectric production, drinking water supply, navigation and
the maintenance of ecosystems.

2.2 Data

In West Africa, meteorological data managed by national me-
teorological services are difficult to access due to their high
acquisition costs (Bodian et al., 2020). Additionally, the low
density of the observation networks limits their spatial rep-
resentativeness at the scale of the catchment area (Ndiaye
et al., 2020). For this reason, reanalyses from the NASA
Langley Research Center (LaRC) POWER Project funded

through the NASA Earth Science/Applied Science Program
(https://power.larc.nasa.gov, last access: February 2022) are
used as an alternative (Ndiaye et al., 2020). The coordinates
of 160 (64, 58 and 38 for Senegal, Gambia and Casamance
river basins, respectively) stations distributed across the three
basins (Fig. 1) are used to extract climate variables on a daily
scale over the period 1984–2019. The climatic variables col-
lected are: maximum and minimum air temperatures, solar
radiation, air relative humidity and wind speed at 2 m above
ground.

2.3 Methods

2.3.1 Estimation method of reference evapotranspiration

The reference method used is that of FAO56-PM which is
given by the following formula:

ET0FAO56−PM =
0.4081 (Rn−G)+ γCn

T+273.3u2(es− ea)

1+ γ (1+Cdu2)
(1)

Where ET0FAO56−PM is the reference evapotranspira-
tion (mm d−1), Rn: net radiation on the crop surface
(MJ m−2 d−1), G is the heat flux density of the soil
(MJ m−2 d−1) which is ignored on a daily scale, T is the
average daily air temperature at a height of 2 m (°C), Cn
and Cd are constant values which change according to the
scale of time used (on a daily scale Cn and Cd are 900 and
0.34 respectively), u2 is the wind speed at a height of 2 m
(m s−1), es is the saturated vapor pressure (kPa) , ea is real
vapor pressure (kPa), (es-ea) is the saturation deficit (in kPa)
1 is the vapor pressure slope curve (kPa °C−1) and γ is the
psychrometric constant psychometric (kPa °C−1).

The list of the twenty alternative methods used in this work
as well as their mathematical formulations are detailed in
Ndiaye et al. (2020). The Table 1 give only the names of
methods used and their categories.

The calibration of the best methods was done by the gra-
dient reduction method (Bogawski and Bednorz, 2014). This
seeks to change the constant values of the original methods to
minimize estimation errors. For this, the series is divided into
two part as recommended by Xu and Singh (2001): 2/3 of the
series (1984–2005) for calibration and 1/3 (2006–2019) for
validation. The calibrated methods were re-evaluated using
the same criteria as for the evaluation with different time-
frame dataset.

2.3.2 Evaluation criteria

Kling Gupta Efficiency (KGE, Gupta et al., 2009) and per-
centage bias (PBIAS) are used (Table 2) to assess the per-
formance of alternative methods. The KGE includes both the
correlation coefficient (r), the biases (β) and the variability
(γ ) and makes it possible to determine the degree of con-
cordance between the reference ET0 and that of the alterna-
tive methods. The PBIAS indicates errors as a percentage. A
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Figure 1. Location of the three Senegalese hydrosystems, hydraulic infrastructures, climate zones, hydrographic network and weather
stations used to extract reanalyses data.

Table 1. List of the twenty alternative methods evaluated against FAO56-PM.

Categories References Abbreviation Categories References Abbreviation

Aerodynamic

Dalton (1802) DN (2)

Radiation

Makking (1957) MK (12)
Trabert (1896) TRB (3) Jensen et Haise (1963) JH (13)
Penman (1948) PNM (4) Priestley and Taylor (1972) PT (14)
Rohwer (1931) RW (5) Abtew (1996) AB (15)
Mahringer (1970) MHR (6) Oudin (2005) OD (16)

Temperature

Hargreaves (1975) HG (7)

Combinatory

Penman (1963) PNM (17)
Hargreaves and Samani (1985) HS (8) Doorenbos and Pruitt (1977) DP (18)
Trajkovic and Stojnic (2007) TRA (9) Valiantzas 1 (Valiantzas, 2013) Val 1 (19)
Droogers and Allen (2012) DA (10) Valiantzas 2 (Valiantzas, 2013) Val 2 (20)
Heydari and Heydari (2014) HH (11) Valiantzas 3 (Valiantzas, 2013) Val 3 (21)

positive/negative PBIAS indicates an overestimation/under-
estimation of ET0 by the alternative method.

3 Results and discussion

3.1 Evaluation of twenty alternative methods against
FAO56-PM

Figure 2 gives the synthesis of the KGE of the twenty al-
ternative methods compared to the FAO56-PM (Penman–

Monteith). Because of the objective of this work, only the
results of methods integrating few climatic variables are pre-
sented. The performance of these methods varies slightly de-
pending on the river basins. For the Senegal River basin, the
five best methods are those of Trabert, Valiantzas 3, Jensen
& Haise and Hagreaves & Samani. For the Gambia River
basin, in addition to the methods of Valiantzas (2 and 3),
those of Oudin, Droogers & Allen and Hargreaves & Samani
are the most robust for estimating ET0. The KGE values of
these methods are generally greater than 0.60 and estima-
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Table 2. Evaluation criterea, range, optimal values.

Criteria Formula Range Optimal values

PBIAS
[ 1
n

∑n
i=1

(
ET0alt −ET0FAO56−PM

)
1
n

∑n
i=1

(
ET0alt

) ]
· 100 −∞, +∞ 0 (22)

KGE 1−
√

(r − 1)2+ (β − 1)2+ (α− 1)2 −∞, 1 1 (23)

Figure 2. Performance of the methods according to the KGE (The red line in each figure represents the mean values of each KGE).

tion errors of −4 % to 23 %. In the Casamance River basin,
the temperature-based methods of Hargreaves (HG) and Tra-
jkovic give the best results with KGE of nearly 0.88 and low
estimation errors ranging from −4.6 % to 11 %.

3.2 Calibration and validation of the best methods

The choice of methods to be calibrated is guided by the per-
formance criteria and the number of climatic variables they
include. On the basis of these criteria, five methods were
selected in each basin for calibration. In the Senegal River
basin, the mean KGE values of Trabert and Hargreaves &
Samani methods increased globally by 24 % to 40 %. Trabert
estimation errors were reduced by 97 % after calibration. In
the Gambia River basin, the KGE values of the calibrated
methods increased by 12 % to 28 %. The estimation errors
of the VAL2 and DA methods decreased by 37 % and 23 %,
respectively, after calibration in the basin. In the Casamance
River basin, calibration slightly improved the performance
of the methods. For example, the KGE values of the VAL2,
HG and TRJ methods increased by 7 %, 5 % and 2 % re-
spectively (Fig. 3 and Table 3). Figure 4 gives the spatial

distribution of the PBIAS, which shows that the calibrated
methods are effective in all the river basins. The Trabert
method overestimates ET0 over almost the entire Senegal
River basin while the combinatory (VAL2, VAL3), radiation-
based (Oudin) and temperature-based (Hargreaves) methods
underestimate it in the Gambia basin. In the Casamance
River basin, ET0 is overestimated on the coastal fringe and
underestimated on the mainland. Given the similarity of cer-
tain results and based on the number of climatic variables,
the best methods retained in this study are summarized in Ta-
ble 2. Thus, the calibration has improved the performance of
the methods for estimating ET0 in the three basins. The per-
formance of these methods was noted by Ndiaye et al. (2020)
in the Senegal River Basin and Djaman et al. (2015) in the
Senegal River Valley and Delta.

4 Conclusion

This study provides information on the choice of simple
methods for estimating reference evapotranspiration in the
main hydrosystems of Senegal. The results show that the
Trabert method can be used in the Senegal River basin
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Table 3. Formula of methods before and after calibration.

Reference Before calibration After calibration

Senegal River Basin

Hargreaves and Samani (1985) ET0HS = 0.408× 0.0023(T + 17.8)×
(Tmax− Tmin)0.5

×Ra
ET0HScal = 0.408× 00031(T + 17.8)×
(Tmax− Tmin)0.5

×Ra

Trabert (1896) ET0TRB = 0.3075
√
u2(es− ea) ET0TRBcal = 2770

√
u2(es− ea)

Valiantzas-2 (Valiantzas, 2013) ET0VAL2 = 0.0393Rs
√
T + 9.5−

0.19R0.6
s ×φ

0.15
+ 0.078(T + 20)×

(1−Hr/100)

ET0VAL2cal = 0027Rs
√
T + 9.5−

0.19R0.6
s ×φ

0.15
+ 0159(T + 20)×

(1−Hr/100)

Gambia River Basin

Hargreaves and Samani (1985) ET0HS = 0.408× 0.0023(T + 17.8)×
(Tmax− Tmin)0.5

×Ra
ET0HScal = 0.408×
000299(T + 2.22)×
(Tmax− Tmin)0.577

×Ra

Oudin (2005) ET0OD = Rs(T + 5)/100 ET0ODcal = Rs(T − 10)/676

Casamance River Basin

Hargreaves (1975) ET0HG = 0.0135× 0.408Rs(T + 17.8) ET0HGcal = 0024× 0.408Rs(T − 3)

Trajkovic and Stojnic (2007) ET0TRJ = 0.0023×0.408×(T+ 17.8)×
(Tmax− Tmin)0.424

×Ra
ET0TRJcal = 0.0035× 0.263×
(T + 16.63)× (Tmax− Tmin)0.495

×Ra

Figure 3. KGE values before and after calibration.

when temperature and wind speed data are available. The
Valiantzas 2 method is applicable to all three basins. For
the Gambia and Casamance river basins, temperature-based
(Hargreaves, Hargreaves & Samani and Trajkovic) and
radiation-based (Oudin) methods can be used when only tem-
perature or solar radiation data is available. This information

can be useful for water managers and irrigation development.
However, the reanalyses data used can constitute a limit of
this work.
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Figure 4. Spatial repartition of PBIAS according to calibrating methods.
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