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Abstract. The sensitivity of expected annual damage, EAD, is analytically analysed by applying a log-linear re-
lation between return periods and corresponding damages. It is found that the smallest return period for damage
should be estimated as precisely as possible, that the percentage uncertainty in the damage estimate is trans-
formed into the same percentage uncertainty in the EAD estimate, and that it is possible to extrapolate beyond
the largest return period with corresponding damage assessment. The precision of the estimate of EAD is inves-
tigated in detail in the case of only few available data, and it is found that two different methods for numerical
integration may result in strongly diverging results. By applying a piecewise log-linear damage function, it is
shown that the log-linear model provides a trustworthy estimate of EAD, also in the case of few available data.
Finally, the modifications needed in the special case of threshold exceedance data instead of annual maxima data
are presented.
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1 Introduction

In the future, large urban drainage structures in Denmark
will be designed based on economic criteria instead of de-
sign based on a fixed return period (SVK, 2017). The soci-
etal value of the structure will be evaluated as the reduction
in net present value of future damages less the net present
value of investments and maintenance costs. Implicitly, it has
been assumed that EAD (the expected annual damage) can be
trustworthy determined. This, however, may strongly depend
on the estimation method and the available data. Analytical
estimation based on a log-linear relation between return pe-
riod and corresponding damage (Olsen et al., 2015; Rosb-
jerg, 2017) is here further developed by introducing a step-
wise integration. The method is evaluated by analysing two
cases with, respectively, ample and sparse data availability.
It is concluded that use of the analytical model is superior
to straightforward numerical integration. Both annual max-
imum data and threshold exceedance data (known as peak
over threshold series, POT, or partial duration series, PDS)
are considered.

2 Theory

If the distribution function for the annual maximum X is de-
noted FX(x)= P {X ≤ x}, the T -year event xT is given by

FX (xT )= 1−
1

TX

= 1−pX (1)

Consequently

xT = F−1
X

(
1−

1
TX

)
; TX ≥ 1 (2)

The damage caused by the TX year event is denoted
by DX(TX) and the density function of X by fX(x)=
dFX(x)/dx. Accordingly, EAD can be determined by

EAD=
∫
∞

0
DX (xT ) fX (xT )dxT =

∫
∞

1

DX(TX)
T 2

X

dTX (3)

or

EAD=
∫ 1

0
Dp (pX)dpX; Dp (pX)=DX

(
1

pX

)
(4)

In practise, the integrations in Eqs. (3) and (4) are carried out
inside the limits defined by available data.
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In the case of threshold exceedance data with k ex-
ceedances per year in average and the distribution function
for threshold exceedances Y denoted by GY (y), we get

GY (yT )= 1−
1

k TY

= 1−pY (5)

Consequently

yT =G−1
Y

(
1−

1
k TY

)
; TY ≥

1
k

(6)

Hereby EAD becomes

EAD=
∫
∞

1/k

DY (TY )
T 2

Y

dTY (7)

or

EAD= k

∫ 1

0
Dp (pY )dpY ; Dp (pY )=DY

(
1

k pY

)
(8)

Experience has shown and confirmed by the present analysis
that a log-linear relation between return period and damage
can be a good approximation.

D(T )= a lnT + b (9)

where it may be assumed that the equation is valid also for
T−>∞. If D(T )= 0 for T = Ts , then by integration from
Ts to∞ we get

EAD=
a

Ts

(
1+ ln

Ts

T0

)
; T0 = exp

(
−

b

a

)
(10)

Integration between two arbitrary return periods Ti and Tj

greater than Ts leads to the EAD-contribution

EAD=
a

Ti

(
1+ ln

Ti

T0

)
−

a

Tj

(
1+ ln

Tj

T0

)
(11)

If the log-linear relation is valid until T = Tc and then con-
stant for Tc < T <∞, the contribution to EAD from the con-
stant part is

EAD=
a

T0
−

a

Tc

(
1+ ln

Tc

T0

)
+

D(Tc)
Tc

(12)

3 Case A: Good data coverage

First, some initial sensitivity analyses are carried out based
on annual maxima data with corresponding damage costs in
a case with good data coverage, see Table 1. Implicitly, all
costs are in mill. DKK. Case A refers to an idealised situ-
ation, where the data closely corresponds to the log-linear
assumption.

Table 1. Case A – Damage cost as function of return period.

T D(T ) lnT

1 0 0
3 70 1.099
8 130 2.079
15 180 2.708
30 260 3.401
60 280 4.094
150 375 5.011
300 450 5.704

Figure 1. Case A – Cost function in log-linear plotting.

Table 2. Case A – Sensitivity of EAD.

Basic solution Ts = 1 62.5
Ts = 2 57.5
D(T )+ 10 % 68.2
D(T )− 10% 56.2
Without extrapolation 60.8
Numerical integration over T 61.7
Numerical integration over p 70.0
D(T ) constant above T = 500 62.3
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Table 3. Case B – Damage cost as function of return period.

T D(T ) lnT

1.6 0 0.470
5 0.0009 1.609
20 20.5 2.996
50 49.5 3.912
100 65.5 4.605

Figure 2. Case B – Cost function in log-linear potting.

Inserting the regression parameters acquired from Fig. 1
into Eq. (10) results in the basic result shown in Table 2.
The sensitivity of the result is investigated by varying input
values one by one as indicated in Table 2. The numerical
integrations are carried out based on Eq. (3).

Some differences, but not substantial, are noticed between
the obtained methods. An uncertainty of 10 % in the damage
cost is seen to cause an uncertainty in EAD also of 10 %.
Generally, the different results are of the same order of mag-
nitude.

4 Case B: Sparse data coverage; numerical vs.
analytical integration

Corresponding values obtained from Rambøll (2021) of an-
nual maxima return periods and damage costs are shown in
Table 3, and regression parameters obtained from a log-linear
plot can be seen in Fig. 2. The limited number of cost esti-
mates reflects the fact that it is quite labour intensive to es-
timate the costs. The figure reveals that the log-linear model
provides a poor fit. However, by omitting the first data pair,
which is justifiable since the resulting EAD value does not
change at all when applying usual numerical integration, the
log-linear fit is substantially improved. Having now only four
data points justifies the characterization “sparse”.

Figure 3. Case B – Numerical integration over T (area below the
curve).

Figure 4. Case B – Numerical integration over p (area below the
curve).

In Figs. 3 and 4, the curves for numerical integration over,
respectively, T and p are shown. Contrary to Case A, the in-
tegration results are here strongly differing. The area under
the curve in Fig. 3 is found to be EAD= 2.11, whereas the
area under the curve in Fig. 4 is calculated to EAD= 3.16
with no obvious explanation for the difference other than
a strong non-linearity being present in both integrands. It
makes no difference whether the first point in Table 3 is in-
cluded or excluded.

The above results and corresponding results using the log-
linear model combined with analytical integration are shown
in Table 4. Suffix w means calculation without extrapolation,
suffix e indicates calculation with extrapolation and suffix t

the sum. Both one, two and pointwise log-linear approxima-
tions using Eq. (11) are applied.

The results show that the log-linear model combined with
analytical integration is generally applicable, also in the case
of a sparse data set, where straightforward numerical integra-
tion appears inadequate. It is also seen that extrapolation can
provide a significant supplement to the EAD value obtained
by integration inside the interval covered by data.
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Table 4. Case B – Numerical vs. analytical integration.

Integration method EADw EADe EADt

Numerical integration over T 2.11
Numerical integration over p 3.16
Analytical integration without T = 1.6 using one log-linear approximation 2.97 0.86 3.83
Analytical integration without T = 1.6 using two log-linear approximations 2.72 0.95 3.67
Analytical integration using pairs of data points 2.74 0.90 3.64

Table 5. Case C – Damage cost as function of return period.

T D(T ) lnT

0.33333 0 −1.099
0.7 15 −0.357
1 30 0
3 70 1.099
8 130 2.079
15 180 2.708
30 260 3.401
60 280 4.094
150 375 5.011
300 450 5.704

Figure 5. Case C – Cost function in log-linear plotting.

5 Case C: Estimation of EAD with exceedance data

Here almost the same example as in case A is used, how-
ever slightly modified for T = 1 and supplemented with two
data pairs for T < 1, see Table 5. The averages number of
exceedances per year is k = 3. The dataset is depicted in a
log-linear graph in Fig. 5.

The results of the different integration methods are shown
in Table 6. As in case A, we see only moderate divergence
between the different integration methods. Integration over T

gives the largest value with integration over p being slightly
below. However, in comparison with case A it is found that
adding damage costs for return periods below T = 1 implies
a significant increase in the EAD estimate.

Table 6. Case C – Integration using exceedance data.

Exceedance data EADw EADe EADt

Numerical integration over T 106.4

Numerical integration over p 101.1

Analytical integration using
pairs of data points 95.7 1.8 97.5

6 Conclusions

By analysing three cases, the following experience has been
obtained.

Sensitivity

– It is important to know the return period for which dam-
ages get started, as frequent but small damages con-
tribute significantly to EAD.

– Percentwise uncertainty in damage costs implies the
same percentwise uncertainty in the estimate of EAD.

– The added supplement to EAD obtained by extrapola-
tion can be significant.

Numerical integration

– Using numerical integration may result in diverging re-
sults when integrating over, respectively, T and p.

– In the case of a sparse data set, and for small values of
T , the difference may be substantial.

Analytical integration

– Using a log-linear model combined with analytical in-
tegration is a flexible and convenient tool. A piecewise
application down to data pairs is easily performed. The
method provides trustworthy results and can be extrapo-
lated to infinity, contrary to ordinary numerical integra-
tion.

Code availability. The applied software is developed by the au-
thor and not publicly accessible.
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Data availability. The data in Case A and Case C are artificially
created by the author. The data in Case B are publicly available
in Rambøll (2021; https://www2.mst.dk/Udgiv/publikationer/2018/
manual.pdf, last access: 21 January 2023).
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