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Abstract. Predictive hydrologic modelling to understand and support agricultural water resources management
and food security policies in Nigeria is a demanding task due to the paucity of hydro-meteorological measure-
ments. This study assessed the skill of using different remotely sensed rainfall products in a multi-calibration
framework for evaluating the performance of the mesoscale hydrologic Model (mHM) across four different
data-scarce basins in Nigeria. Grid-based rainfall estimates obtained from several sources were used to drive the
mHM in different basins in Nigeria. Model calibration was first performed using only discharge records, and
also by using a combination of discharge and actual evapotranspiration, forced with different rainfall products.
The mHM forced with CHIRPS produced reasonable Kling-Gupta efficiency KGE) results (0.5> KGE < 0.85)
under both calibration frameworks. However, constraining model parameters under a multi-calibration arrange-
ment showed no significant discharge simulation improvement in this study. Results show the utility of the mHM
for discharge simulation in data-sparse basins in Nigeria.
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1 Introduction

Modelling of hydrologic systems is crucial to understand-
ing how climatic variables drive hydrologic responses, which
are highly sensitive to land use/cover changes and popula-
tion dynamics. Quantifying the components of the water bal-
ance model is strategic to policymakers and water resources
managers for developing key water resources management
projects (Nesru et al., 2020). In Nigeria, in-situ measure-
ment of hydrologic variables is largely constrained by finan-
cial instability, weak institutions and political instability re-

sulting in a steady decline and uneven distributions of ex-
isting hydro-meteorological networks (Poméon et al., 2018;
Adeoti, 2020). Precipitation acts as a key forcing in the hy-
drologic system and affects the spatial and temporal variabil-
ity of other hydrologic processes. Gridded rainfall products
provide continuous and spatially-homogenous estimates and
have become an alternative, especially in data-scarce regions
(Ayehu et al., 2018). However, their ability to reproduce ob-
served hydrologic processes is a precondition for use in water
resources modelling (Dembélé et al., 2020).

The availability of remotely-sensed datasets (elevation,
soil, land use/cover, climatic variables) led to the develop-
ment of complex hydrologic models but these efforts did
not impact model results (Poméon et al., 2018). This is be-
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cause the traditional method of model calibration which in-
volves determining the best model parameter set could re-
produce observed hydrologic variables but misrepresent im-
portant watershed processes (Rajib et al., 2018). The impor-
tance of understanding hydrologic processes and improving
their mathematical representation is well highlighted during
the International Association of Hydrologic Sciences (IAHS)
scientific decade (2003–2012) (Hrachowitz et al., 2013). In
other to overcome the problems of over-parameterization
and equifinality, the Mesoscale Parameter Regionalization
(MPR) proposed by Samaniego et al. (2010) presents a tech-
nique which links model parameters at a coarser scale with
their counterparts at a finer resolution using pedotransfer
functions, whereby only the global parameters that define
these relationships are obtained through calibration. In com-
parison with other regionalization methods (e.g. standard re-
gionalization), MPR showed superiority in preserving the
spatial variability of state variables and overall performance
of model hydrologic processes simulation (Samaniego et al.,
2010; Kumar et al., 2010). The MPR technique reduces the
number of free mHM calibration parameters and seeks to ad-
dress Question 20 (reducing model uncertainty) of the Un-
solved Problems in Hydrology (UPH 20) (Blöschl et al.,
2019). In this study, the key research question is: what is
the performance of the mHM-MPR technique in reproduc-
ing the temporal variation of the streamflow process under
a paucity of input-data conditions? This is the first attempt
in applying the mHM-MPR technique for hydrologic mod-
elling in data-scarce basins within Nigeria. This study as-
sessed the suitability of using gridded-rainfall products in a
multi-calibration framework for evaluating the performance
of mHM for river discharge simulations across four (4) dif-
ferent data-scarce basins in Nigeria.

2 Methodology

2.1 Study Area

The study area consists of four (4) river basins located
in the northern part of Nigeria (Lat 4.00–14.00° N, Lon
2.00–15.00° E), which were selected based on the avail-
ability of discharge data: Jamaare (13 929.711 km2), Hade-
jia (16 820.336 km2), Kaduna (64 848.594 km2) and Oroo
(4500.174 km2) as shown in Fig. 1. Rainfall in this region
is unimodal and is impacted by the movement of the Inter-
Tropical Discontinuity (ITD). Jamaare, Hadejia and Kaduna
basins receive an annual mean rainfall of about 434–969 mm
while the Oroo basin is characterized by an annual mean of
897–1535 mm (Gbode et al., 2019; Ogbu et al., 2020).

2.2 The Mesoscale Hydrologic Model (mHM)

The mHM is a grid-based, conceptual and fully distributed
hydrologic model which simulates various hydrologic pro-
cesses (evapotranspiration, infiltration, surface and subsur-

face runoff, etc.) that are formulated based on the HBV
model (Kumar et al., 2013; Samaniego et al., 2010). Spatial-
temporal simulations of hydrologic processes in the mHM
are processed at the grid/cell scale. Three levels of gridded
information are required for mHM set-up; Level-0 (basin
characteristics), Level-1 (dominant hydrological processes)
and Level-2 (meteorological datasets), to account for sub-
grid variability (Kumar et al., 2013). The MPR proposed by
a study (Samaniego et al., 2010) is the main feature in the
mHM model and serves to bridge the gap between observa-
tions and the basin scale (Rakovec et al., 2019). The MPR
involves a two-step parameterization procedure (see Fig. 2);
(1) model parameters at Level-0 are regionalized by linking
them with their corresponding basin characteristics through
linear or non-linear transfer functions; (2) In this stage, effec-
tive parameters are obtained by linking the regionalized pa-
rameters with their corresponding one at Level-0 through an
upscaling operator. The major goal of the MPR is to derive
global model parameters that are spatially seamless, scale-
independent and transferable across locations (Rakovec et
al., 2019).

2.3 Data

In this study, mHM was set up using grid-based meteoro-
logical, soil, land use and morphological datasets. Rainfall
estimates were obtained from the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS), Climate
Prediction Center (CPC), European Center for Medium-
Range Weather Forecast (ECMWF) Reanalysis 5th Gener-
ation (ERA5), Global Precipitation Climatological Center
(GPCC) and Multi-Source Weighted Ensemble Precipitation
(MSWEP) and used as model forcing. Potential evapotran-
spiration was computed with the Hargreaves method using
daily temperature data obtained from the ERA5 product.
These climatic products were selected based on their perfor-
mances in previous studies (Poméon et al., 2017; Dembélé
et al., 2020; Ogbu et al., 2020, 2022; Hounguè et al., 2021)
within the West African region. Soil attributes for six differ-
ent soil layers were extracted from the Harmonized World
Soil Database, version 1.2 while Land use and cover infor-
mation were obtained from Globecover product. Slope, as-
pect, flow accumulation and flow direction were derived from
a 90 m resolution digital elevation model obtained from the
Shuttle Radar Topographic Mission database. mHM calibra-
tion and validation were performed using discharge and AET
information obtained from the German-developed Global
Runoff Data Center (GRDC) and Global Land Evaporation
Amsterdam Model (GLEAM) databases, respectively.

2.4 Model set-up

mHM Version 5.11 (Samaniego et al., 2021) was set up in
four (4) data-scarce basins while varying rainfall inputs for
each setup. In the first case, calibration and validation were
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Figure 1. Study locations – Jamaare, Hadejia, Kaduna and Oroo River Basins.

Figure 2. Schematic diagram of MPR (Samaniego et al., 2010).

performed using only Qobs while in the second case, they
were performed using Qobs and AET. Simulation and cali-
bration periods vary for all basins due to the paucity of data
and large gaps in existing discharge time series. Discharge
(Q) optimization was performed using the Dynamically Di-
mensioned Search (DDS) (Tolson and Shoemaker, 2007) al-
gorithm (4000 iterations), based on the Kling-Gupta Effi-
ciency (KGE) (Kling et al., 2012; Gupta et al., 2009) metric

at a daily time step. Best model parameter sets are obtained
with the DDS algorithm by using about 10 %–20 % of the
number of iterations required by the Shuffle Complex Evo-
lution optimization method (Rakovec et al., 2019). The KGE
is an improved version of Nash Sutcliffe Efficiency (NSE)
and constitutes correlation (r), variability and mean bias as
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Figure 3. Qobs calibration and validation for gridded products in each basin.

Figure 4. Daily hydrograph simulation when calibration is performed using only Qobs for Jamaare.

shown in Eq. (1).

KGE= 1−
√

(r − 1)2
+ (∝−1)2

+ (β − 1)2 (1)

where, r = linear correlation, α =measure of flow variability
error, β = bias.

The multivariable calibration, using Q and domain aver-
age AET (Eq. 2) was used to complement Qobs to assess if a
more realistic result will be achieved.

SO30 = [1−KGE(Q)]×RMSE
(
basin ETA

)
(2)

where, SO30 = mHM objective function Number 30, KGE
= Kling-Gupta Efficiency, RMSE

(
basin ETA

)
= root mean

square error of the basin average actual ET simulation.

3 Results and Discussion

3.1 Results

3.1.1 Model Performance for Discharge

Generally, model results varied across rainfall datasets for all
domains during calibration and validation periods for Qobs
simulation (Fig. 3). Daily discharge simulations showed

reasonable results (KGE > 0.5) in all domains except for
MSWEP (in Hadejia), GPCC (in Oroo) and CPC (in Kaduna)
during model calibration. On the other hand, validation re-
sults showed KGE > 0.5 in Jamaare Basin (for ERA5,
CHIRPS and CPC) and Oroo Basin (for CHIRPS).

An example of daily mHM simulated hydrographs for Ja-
maare River Basin during model calibration (Fig. 4) and val-
idation (Fig. 5) showed an acceptable fit with the Qobs time
series. However, the KGE value decreased from 0.85 (dur-
ing model calibration) to 0.61 (during model validation) (see
Figs. 4 and 5).

3.1.2 Model Performance for Qobs and AET Model
Calibration Scheme

In the Qobs/AET model calibration setup, daily streamflow
simulations exhibited the same trend if not slightly worse as
in the Qobs model calibration scheme (Fig. 6). This result is
similar to a previous mHM study (Poméon et al., 2018) in
West Africa, with the Qobs model calibration scheme show-
ing improved discharge predictions. Unsatisfactory KGE re-
sults (< 0.5) were obtained in Oroo Basin (driven by GPCC)
and Kaduna Basin (forced with GPCC) during model calibra-
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Figure 5. Daily hydrograph simulation when validation is performed using only Qobs for Jamaare.

Figure 6. Calibration and validation results for gridded products using Qobs/AET calibration setup.

tion. For the validation period, discharge simulations showed
acceptable results (SO30 > 0.5) in Oroo (driven by CHIRPS),
Hadejia (CPC and MSWEP) and Jamaare (ERA5, CHIRPS,
0.51068). We showed example hydrographs for the Jamaare
River Basin produced using Qobs/AET model calibration
setup (Fig. 7) and for model validation (Fig. 8). For this ex-
ample, SO30 value decreased from 0.85 (calibration) –0.64
(validation) while correlation followed the same trend from
0.85–0.78.

3.2 Discussions

The flow simulation performances driven by the different
gridded rainfall products under the different optimization
frameworks vary across the different domains, modelled in
this study. Overall, simulated streamflow exhibited accept-
able KGE values (KGE > 0.50) during calibration periods
than during model validation for most of the rainfall prod-
ucts. These poor performances could be attributed to gaps in
discharge observations, which exist more within validation
periods. Small KGE improvements achieved when mHM
was calibrated with both Qobs and AET were only evi-
dent in Hadejia and Jamaare basins and do not reflect mHM
robustness for this study. This poor performance in dis-

charge simulation displayed when model parameters are con-
strained under a multivariable calibration scheme was also
reported in another study (Poméon et al., 2018) conducted
within the West Africa region. Visual inspection of simulated
and observed hydrographs showed that the CHIRPS outper-
formed other rainfall products in mimicking observed dis-
charge trends as shown in Figs. 4, 5, 7 and 8. The perfor-
mances of the CHIRPS dataset in most of the domains are
in line with its ability in reproducing observed rainfall at a
point-to-pixel scale in the West African region as shown in
several studies (Ogbu et al., 2020; Poméon et al., 2017; Dem-
bélé and Zwart, 2016). In this study, satisfactory KGE scores
obtained in most domains while using remotely sensed rain-
fall datasets, especially during model calibration could be at-
tributed to the implementation of the MPR technique within
the mHM structure, which ensured that the number of free
calibration parameters was reduced while preserving its spa-
tial variability.

4 Conclusions

In this study, the discharge simulation skill of the mHM was
evaluated in four data-limited basins located in Nigeria, un-
der multivariable optimization setups. The MPR technique,
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Figure 7. Optimized daily hydrograph simulation using Qobs/AET mHM model setup for Jamaare.

Figure 8. Daily hydrograph validation using Qobs/AET mHM model setup for Jamaare.

which integrates the spatial heterogeneity of a domain’s
physiographic characteristics and overcomes the problem of
model over-parameterization, is well suited for application
in this data-scarce region. Notwithstanding the large gaps in
Qobs, the reanalysis product (ERA5) and the satellite rainfall
dataset (CHIRPS) were consistent in satisfactory discharge
simulations in most of the domains. However, significant im-
provements in discharge simulations were not observed when
mHM was calibrated using Qobs and AET. Currently, the
mHM lacks a reservoir component and several dams, which
exist within the study domains, were not included during
model setups. Furthermore, mHM accepts only three land
use and land cover classes (impervious, pervious, and forest)
which do not represent different existing classes. This study
presents the utility of different gridded-rainfall datasets for
discharge simulation in data-scarce regions in Nigeria. How-
ever, investments in hydro-climatic instrumentations should
be given top priority by the government at all levels in Nige-
ria as remote-sensing rainfall products can only complement
in-situ records.

Code and data availability. The mHM code, version 5.10 (ac-
cessed on 1 December 2020) can be obtained from Zenodo
(https://doi.org/10.5281/zenodo.1069202, Samaniego et al., 2021).
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