
Proc. IAHS, 385, 181–187, 2024
https://doi.org/10.5194/piahs-385-181-2024
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Open Access

IA
H

S
2022

–
Variability

and
change

across
space,tim

e,extrem
es,and

interfaces

Pros and cons of various efficiency criteria for
hydrological model performance evaluation

Charles Onyutha
Department of Civil and Environmental Engineering, Kyambogo University,

P.O. Box 1, Kyambogo, Kampala, Uganda

Correspondence: Charles Onyutha (conyutha@kyu.ac.ug)

Received: 25 May 2022 – Revised: 28 January 2023 – Accepted: 30 March 2023 – Published: 18 April 2024

Abstract. Confidence in hydrological predictions is linked to the model’s performance in reproducing avail-
able observations. However, judgment of a model’s quality is challenged by the differences which exist among
the available efficiency criteria or objective functions. In this study, model outputs based on several objective
functions were compared and found to differ with respect to various circumstances of variability, number of
outliers, and model bias. Computational difficulty or speed of a model during calibration was shown to depend
on the choice of the efficiency criterion. One source of uncertainty in hydrological modelling is the selection of
a particular calibration method. However, this study showed that the choice of an objective function is another
sub-source of calibration-related uncertainty. Thus, tackling the issue of uncertainties on model results should
comprise combination of modelled series obtained based on (i) various objective functions separately applied to
calibrate a model, (ii) different calibration methods, and (iii) several hydrological models. The pros and cons of
many new and old efficiency criteria which can be found explored in this study highlight the need for modellers
to understand the impact of various calibration-related sub-sources of uncertainties on model outputs.
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ation; Model calibration uncertainty

1 Introduction

Model quality can be judged in terms of “goodness-of-fit”
(GOF) or how well a model fits through observations or
measured data points (Onyutha, 2022). Mathematical mea-
sures of model quality can be regarded as efficiency cri-
teria (Beven, 2012). There are several efficiency criteria
such as coefficient of determination (R2) (also called R-
squared), revised R-squared (RRS) (Onyutha, 2022), index
of agreement (IOA) (Willmot, 1981), Nash Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe, 1970), Kling Gupta effi-
ciency (KGE) (Gupta et al., 2009), hydrological model skill
score or Onyutha Efficiency (OE) (Onyutha, 2022), Liu mean
efficiency (LME) (Liu, 2020), Taylor skill score (TSS) (Tay-
lor, 2001), Root mean squared error (RMSE), and Mean ab-
solute error (MAE). Differences exist among these various
efficiency criteria and/or objective functions. Furthermore,

each efficiency criterion has its advantages and disadvan-
tages. Thus, outputs of a model calibrated using various ob-
jective functions can also differ.

Question number 20 of the unsolved problems in hydrol-
ogy (UPH 20) (Blöschl et al., 2019) deals with the need to
reduce model uncertainty. As highlighted in UPH20, uncer-
tainty in model results can be due to model structure, param-
eter, or inputs. However, other sources of model uncertainty
also exist as explored in this study.

It is worth noting that many old and new efficiency criteria
can be found in literature. However, no any paper (which ex-
plored the pros and cons of the various old and new efficiency
criteria) could be found in literature by the time of conduct-
ing this study. Therefore, this study was aimed at filling this
knowledge gap to give modellers wide-ranging information
which could influence decision regarding the choice of the
best performing model in making hydrological prediction.
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2 Materials and methods

2.1 Data and models

To evaluate efficiency criteria, several series were required.
One way to obtain the required series for analysis was to
make use of outputs from hydrological models. Here, con-
ceptual models were preferred to physical models. This was
because conceptual models (i) have few parameters, (ii) re-
quire few inputs, and (iii) are easy to calibrate compared
with physical models. In this line, two lumped conceptual
hydrological models including Hydrological Model focus-
ing on Sub-flows’ Variation (HMSV) (Onyutha, 2019) and
Nedbør-Afstrømnings-Model (NAM) (Nielsen and Hansen,
1973) were applied to model river flow of the Jardine River
catchment (with area 2500 km2) in Australia. Each of the se-
lected models require catchment-wide averaged rainfall and
potential evapotranspiration as inputs.

2.2 Application of the selected hydrological models

Each selected model was calibrated using the Generalized
Likelihood Uncertainty Estimation (Beven and Binley, 1992)
framework. To do so, one of the metrics (R2, RRS, IOA,
NSE, KGE, OE, LME, TSS, RMSE, and MAE) was selected
as the objective function for model optimization by running
HMSV or NAM using 10 000 sets of parameters randomized
within the stipulated parameter space. The optimal set of pa-
rameters was that which yielded the best value of the objec-
tive function or the most promising fit between the observed
and modelled series. The procedure was repeated to ensure
each of the efficiency criteria was used to generate a set of
model outputs. Finally, model outputs based on the various
efficiency criteria were compared.

To compute the various efficiency criteria, consider X̄ and
Ȳ as the mean of the observed (X) and modelled (Y ) series,
respectively. Take r as the coefficient of correlation between
X and Y . Let ra denote the maximum attainable r value (and
it was taken to be 0.9975 in this study). Other terms to note
include sample size (n), standard deviation of X (sx), vari-
ance ofX(s2

x ), standard deviation of Y (sy), variance of Y (s2
y ),

normalized sy
(
ŝy
)
, distance covariance of X (dxx), distance

covariance of Y (dyy), and distance covariance of X and Y
(dxy). We can compute the selected efficiency criteria using
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Ȳ

X̄
− 1

)2

(7)

TSS=
4(1+Qd )(
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Note that in Eqs. (2) and (6), when sx = syc = 0, RRS=
OE= 0. Results of the models were analysed while explor-
ing the advantages and disadvantages of each of the consid-
ered efficiency criteria.

2.3 Simulation experiments

To demonstrate the pros and cons of the various efficiency
criteria or objective functions, several experiments were con-
ducted using synthetic series. This was to investigate the in-
fluence of various factors on model outputs obtained using
each objective function. These factors included variability,
bias, and presence of outliers. Various efficiency criteria were
compared with respect to the computation time under vary-
ing sample sizes. In the experiment involving outliers, one
series (A) of sample size n was generated. Here, the standard
deviation and mean of A were purposely made to be approx-
imately 0.25 and 0.5, respectively. Another series (B) was
then obtained as a copy of A. One data point of A was made
as an outlier and the resultant series was termed A1. An out-
lier was obtained by making a selected data point to be at
least three times the 75th percentile in the series. The various
efficiency criteria were applied to A1 and B. The outliers’
extent was computed as the ratio of the number of outliers to
n in percentage. While keeping B unchanged, the procedure
was repeated with the number of outliers in A increased to
two, three, four, . . . , G, to obtain A2, A3, A4, . . . , AG, re-
spectively. Here, G is an integer which makes the outliers’
extent to be approximately 5 % of n.
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For experiments involving biases, the starting point was
series A. Using small increments in terms of 1= 0.05, sev-
eral other series (B’s) were obtained using Bi,j = (1× j +
Aj ) while considering (1≤ j ≤ F ) and (1≤ i ≤ n) where F
is a whole number such that the percentage bias is equal to
or approximately 10 %. Efficiency criteria were applied to A
and each of the B’s. Like for biases, the experiments for vari-
ability were based on series A as the starting point. Several
other series (B’s) were generated in terms of γ = 0.001 us-
ing Bi,j = (γ × j ×Ai) where (1≤ j ≤W ) and (1≤ i ≤ n).
Here,W is a whole number which makes the standard devia-
tion of Bj equal to 1. Relative coefficient of variation (RCV)
was computed as the ratio of the standard deviation of Bj to
the mean of A. Values of efficiency criteria applied to A and
each of the B’s were compared. When γ × j = 1, it meant,
Bj = A and here, RCV≈ 0.5 while all the efficiency criteria
were expected to be at their values which indicate an ideal
model performance.

3 Results and discussion

3.1 Comparison of various GOF metrics

Figure 1 shows result for comparison of the GOF values
based on various criteria. The computation time (in sec-
onds) for OE was slightly larger than those for other met-
rics (Fig. 1a). This is because OE comprises distance cor-
relation, a term which has substantial run time of old algo-
rithms. The fastest algorithm (known by the time of writing
this paper) for computing distance correlation is the one pro-
vided by Chaudhuri and Hu (2019). Computation times for
the other efficiency criteria are comparable. For series of n
up to 1× 106, it took less than one second to obtain a value
of each efficiency criterion.

The values of R2 remained constant regardless of the vari-
ation in the RCV (Fig. 1a). As the RCV increased from zero
to 0.5, values of the other efficiency criteria (NSE, KGE, OE,
RRS, TSS, IOA) increased. On the other hand, as the RCV
increased from 0.5 to one, the values of NSE, KGE, OE,
RRS, TSS, and IOA decreased. MAE and RMSE decreased
linearly to zero as RCV increased from zero to 0.5. However,
both MAE and RMSE increased linearly as RCV increased
from 0.5 to one. The best value of each GOF metric was ob-
tained when the RCV was approximately 0.5 (or when the
two series being compared were identical).

Generally, increase in the number of outliers leads to poor
performance of the model (Fig. 1c–d). Except for TSS and
R2, GOF metrics which occur over the range 0–1 reduced
as the extent of outliers increased (Fig. 1c). However, an in-
crease in the number of outliers makes the values of NSE,
KGE, and LME less negative while MAE and RMSE in-
crease in magnitudes (Fig. 1d). As bias increases, the mag-
nitudes of all the selected GOF metrics (except for TSS and
R2) generally decrease (Fig. 1e) or increase (Fig. 1f) thereby

Figure 1. Comparing GOF metrics based on (a) computational
load, (b) RCV, (c–d) outliers’ extent, and (e–f) model bias.

showing reduction in model quality. TSS andR2 do not quan-
tify bias (Fig. 1e).

3.2 Application of HMSV and NAM

Figure 2 shows impact of the choice of an efficiency crite-
rion on the modelled output. Modelled series based on vari-
ous efficiency criteria resonated with observations to various
extents (Fig. 2a–b). Considering HMSV (Fig. 2a), observed
flow was more over-estimated by the modelled results based
on R2 than those obtained using other objective functions.
However, modelled outputs based on RMSE exhibited the
largest under-estimation compared with results from other
objective functions. While considering NAM (Fig. 2b), re-
sults based on calibration using almost all selected objective
functions resulted into under-estimation of the maximum ob-
served flow. The largest and smallest under-estimation was
from results based on R2 and TSS, respectively.

The water balance closure was noted to depend on the se-
lected efficiency criterion. The dissimilarity in the extent of
spread of the right tails of the cumulative flow generated by
HMSV and that of NAM was due to the difference in the
structures of the models (Fig. 2c–d). One key area in which
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Figure 2. Observed (Obs) flow versus outputs of (a, c) HMSV and
(b, d) NAM.

these hydrological models tended to differ was in reproduc-
ing observed peak flows.

3.3 Discussion

Known sources of uncertainty in hydrological models in-
clude model structure, input data errors, parameters, and cal-
ibration methods. However, this study, based on results from
Figs. 1 and 2, showed that the choice of an objective function
is another sub-source of calibration-related uncertainty. In
other words, the choice of an efficiency criterion influences
judgment of a model’s quality (Onyutha, 2016). Expressly,
the choice of an objective function influences the outputs of
a model. Thus, it is important for a modeller to know their
pros and cons of the various GOF metrics or objective func-
tions.

3.3.1 Coefficient of determination (R2)

The metric R2 (Eq. 1) varies from 0 to 1. Advantages of R2

are that: it is popular, can be computed fast, and R2 does
not have the interpretability limitations. Interpretation of R2

is straightforward in terms of the percentage of the variabil-
ity explained by the model. Furthermore, R2 is suitable for
variables which are linearly related when there is no bias.
There are several disadvantages of R2. It does not quantify
bias (Onyutha, 2022) and can be sensitive to outliers in the
sample. It provides invalid results when the data has mea-
surement errors (Cheng et al., 2014). There are several com-
mon misunderstandings on the use of R2; thus, the use and
interpretation of R2 is confusing (Alexander et al., 2015).

The metric R2 can be low and high for an accurate and im-
perfect model, respectively (Onyutha, 2022). The most com-
monly used R2 formula or the version based on correlation
is unsuitable for analysis of relationships which are not lin-
ear. It yields the same value when we regressX on Y and vice
versa (Onyutha, 2022) thereby invalidating the terming ofR2

as coefficient of determination. Finally, R2 lacks justification
for its use as a descriptive statistic (Cameron, 1993).

3.3.2 Revised R-squared (RRS)

The metric RRS (Eq. 2) (Onyutha, 2022) varies from 0 to 1
and it has a number of advantages. Its computation is fast. We
get different values in the two cases when regressing X on Y
and vice versa (unlike R2). Furthermore, RRS does not have
interpretability limitations (Onyutha, 2022). The metric RRS
indicates the amount of the total variance in observations ex-
plained by the model. A modeller can use RRS to evaluate
model performance in terms of bias, correlation and variabil-
ity (Onyutha, 2022). The formula for RRS does not comprise
direct squaring of the error term, an aspect responsible for
making other metrics (such as NSE) sensitive to large model
errors. The main disadvantage of RRS is that it assumes lin-
ear relationship between X on Y .

3.3.3 Index of agreement (IOA)

The metric IOA (Eq. 3) (Willmot, 1981) ranges from 0 to
1 and the advantages of IOA are that it is widely applied
and can be computed fast. The limits of the IOA do not have
the interpretability limitations. Furthermore, IOA can detect
additive differences in the means and variances of X and Y
(Moriasi et al., 2015). The disadvantages of IOA are that it
can yield high values even for poorly fit model (Krause et al.,
2005; Onyutha, 2022). It is sensitive to extreme values in the
sample. Furthermore, it lacks physical meaning since it does
not have unit. In other words, the IOA values between zero
and one are difficult to interpret.

3.3.4 Nash Sutcliffe efficiency (NSE)

The metric NSE (Eq. 4) (Nash and Sutcliffe, 1970) yields
values which range from −∞ to 1 and the advantages of
NSE are that it is simple and popular. Its computation can
be fast. Values of NSE in the two cases when we regress X
on Y and vice versa are different (unlike R2). The metric
NSE has several disadvantages. It has interpretability limita-
tion compared to other metrics which vary from zero to one
(Onyutha, 2022). Furthermore, NSE lacks physical meaning
since it does not have a unit. Values between the limits −∞
and 1 are difficult to interpret. The metric NSE can be sensi-
tive to outliers. The sampling uncertainty in NSE estimator is
substantial (Clark et al., 2021). The reliance of NSE on mean
of observations leads to exaggerated model efficiency when
analysing highly seasonal river flow (Gupta et al., 2009). The
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metric NSE also does not indicate bias (Jackson et al., 2019)
and it is not suitable for single-event simulations since it can
be inadequate in quantifying differences in the time and mag-
nitude of peak flows (Jackson et al., 2019).

3.3.5 Kling Gupta efficiency (KGE)

The metric KGE (Eq. 5) (Gupta et al., 2009) varies from−∞
to 1 and it has a number of advantages. It is becoming pop-
ular. It considers correlation, variability, and bias measures.
It takes little time to be computed. The value of KGE in the
two cases when we regress X on Y and vice versa are dif-
ferent (unlike R2). On the other hand, there are many disad-
vantages of KGE. It varies from −∞ to 1 and this engenders
interpretability limitations compared to other metrics which
vary from zero to one (Onyutha, 2022). A model’s improve-
ment starts from KGE equal to−0.41 even if the KGE values
are still negative (Knoben et al., 2019). It can be sensitive
to outliers. The sampling uncertainty of KGE is substantial
(Clark et al., 2021). The metric KGE assumes linear relation-
ships among variables and it can be inadequate in evaluating
model performance when this assumption is violated. Fur-
thermore, KGE assumes that the data is normally distributed
and has no outliers; thus, non-normal distribution and pres-
ence of outliers all affect the metric. While optimizing KGE,
the means of the simulation or values which under-estimate
X̄, especially in the high flows will tend to be favourably se-
lected (Liu, 2020). The metric KGE lacks physical meaning
since it does not have unit. Values between the limits −∞ to
1 are difficult to interpret (not as it is clear for the values of
R2).

3.3.6 Hydrological model skill score

The metric OE (Eq. 6) (Onyutha, 2022) varies from 0 to 1 and
its advantages are that it does not assume linear relationship
among variables. The values of OE in the two cases when we
regress X on Y and vice versa are different (unlike R2). The
metric OE allows model performance evaluation in terms of
bias, correlation and variability (Onyutha, 2022). It does not
involve direct squaring of the error term, an aspect responsi-
ble for making other metrics such as NSE sensitive to large
model residuals. Like other metrics, OE has a few disadvan-
tages. It is slightly computationally slower than other met-
rics such as NSE. As mentioned before, the component of
OE which slightly increases the computational time is the
distance correlation.

3.3.7 Liu mean efficiency (LME)

The metric LME (Eq. 7) (Liu, 2020) varies from −∞ to 1.
Its advantages are that it can be computed fast. It considers
correlation, variability, and bias measures. The metric LME
has a number of disadvantages. It assumes linear relation-
ship. Furthermore, it is characterized by underdetermined so-

lutions mainly approaching the excessive flow variation (Lee
and Choi, 2022). Thus, the maximum potential LME can be
characterized by an infinite number solutions (Lee and Choi,
2022). The variation of LME from −∞ to 1 brings about the
interpretability limitations compared to other metrics which
vary from 0 to 1. Like a few other metrics, LME lacks phys-
ical meaning since it does not have a unit. Values other than
one are difficult to interpret. The sampling uncertainty of
LME could be substantial just like that of NSE or KGE (fol-
lowing the methodology of Clark et al., 2021).

3.3.8 Taylor skill score (TSS)

The metric TSS (Eq. 8) (Taylor, 2001) varies from 0 to 1. The
advantages of TSS are that it is popular and can be computed
fast. Limits of TSS are straightforward to interpret. However,
TSS has are a number of disadvantages. It does not quan-
tify bias. It can yield high values even for poorly fit model
(Onyutha, 2022). It can also be affected by the presence of
outliers in the data. The formula for TSS has a term which
requires case-specific calibration to determine the maximum
possible correlation attainable. Furthermore, the metric TSS
assumes linear relationship. TSS also lacks physical meaning
since it does not have a unit. Values between zero and one are
difficult to interpret.

3.3.9 Root mean squared error (RMSE)

The metric RMSE (Eq. 9) varies from 0 to +∞ and it has
several advantages. It has the same unit as the variable being
modelled; thus, easy to interpret given the physical meaning.
It is popular, simple and can be computed fast. The main dis-
advantages of RMSE are that its values remain the same in
the two cases when we regress X and Y and vice versa (like
that of R2). The metric RMSE can be affected by the pres-
ence of outliers in the data.

3.3.10 Mean absolute error (MAE)

The metric MAE (Eq. 10) varies from 0 to +∞. Its advan-
tages are that it is simple and can be computed fast. It has
the same unit as the variable being modelled; thus, easy to
interpret given its physical meaning. There are a few disad-
vantages of MAE. The two cases of regressing X on Y and
vice versa lead to the same value of the metric MAE. Further-
more, MAE can be dominated by even one outlier or large
error.

4 Conclusions

The pros and cons of the various efficiency criteria or objec-
tive functions presented in this study highlight the need to
understand the impact of each efficiency criterion on model
performance assessment (or the effect of the choice of an ob-
jective function on model calibration results) before making
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hydrological predictions. Several sources of uncertainty in
hydrological models are known including model structure,
input data errors, parameters, and calibration methods. How-
ever, this study showed that the choice of an objective func-
tion for calibrating a model is also another sub-source of un-
certainty related to model calibration. Therefore, a modeller
should make use of several efficiency criteria to judge the
quality of a model. Finally, the modeller should obtain an
ensemble of modelled series using results based on various
(i) objective functions used individually to calibrate a model
(ii) calibration methods, and (iii) hydrological models.
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