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Abstract. In recent decades, African cities have been confronted with series of floods linked to rapid urbanisa-
tion, intensification of heavy rains and the failure of the storm drainage system. Developing tools to characterise
floods and reduce their impact is essential to facilitate decision support in a complex and vulnerable context.
This study, conducted in the urban periphery of the Dakar metropolitan area, aims to propose a fine resolution
(5 m) model of flows and overflows of rainwater drainage network in a pilot area. Two methodological steps are
combined to achieve this objective: (1) the construction of the urban drainage topology to reconstitute the water
drainage directions, taking into account the buildings, artificial channels and retention basins, using algorithms
developed for this purpose, (2) simulations of the flows in real time or in project mode, using a parsimonious
spatial model adapted to the local context, coupling a hydrological model (SCS-LR) on the scale of small basins
with a hydraulic model (kinematic wave) for the propagation through the hydrological network. The former en-
sures the speed of the calculation, and the latter provides precise information on the behaviour of the network
during a rainfall event. The overflow points of the network are detected by the difference between the maximum
flow and the capacity of the network to evacuate floods. This modelling provides sufficiently informative simu-
lations to guide the deployment of emergency services in the field, in real time, or to evaluate the efficiency of
infrastructures in project mode, in a context of limited data. The model also provides boundary conditions for
applying more complex hydraulic models to determine the impact of overtopping on limited areas.
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1 Introduction

Floods are recurrent in most urban areas in West Africa
such as Nouakchott, Ouagadougou, Accra, Douala, Lagos, or
Dakar, with impacts on populations, public health, economy
and living environment (Satterthwaite, 2017). These cities
have a high level of vulnerability and appear less resilient
to floods due to their limited coping capacities (Bruckman et
al., 2019). The trend towards increased intense precipitations,
attributed to climate change (Panthou et al., 2018; Chagnaud
et al., 2022), is expected to increase the recurrence of urban

flooding. This brings with it challenges in terms of socio-
economic development and flood risk management in these
cities where urban sprawl is rapid and sometimes unregu-
lated (Jaglin et al., 2018; Williams et al., 2019). It is expected
that the impacts of future urban flooding can be limited not
only by risk reduction measures but also by the implementa-
tion of forecasting systems that are essential to facilitate de-
cision support in this complex and vulnerable context. One
of the challenges is to understand and anticipate the risks of
stormwater overflow (Renard and Riquier, 2008). Several ap-
proaches exist in the literature to identify the areas likely to
be flooded by runoff. They range from methods strictly based
on the analysis of topographic information to locate areas of
water concentration (Pons et al., 2010), to methods introduc-
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ing hydrological (Landemaine, 2016), 1D hydraulic (Pons
et al., 2014) or 2D (Pons et al., 2021) modelling. However,
these methods are relatively limited and do not always take
into account the effects of urbanisation or the various urban
infrastructures that modify the directions of surface runoff.

The present study, carried out in the urban periphery of the
Dakar conurbation, aims firstly to construct a topology that
integrates urban objects modifying the drainage directions
and secondly to propose a calculation method that makes it
possible to locate the overflows of the stormwater drainage
network on the scale of the agglomeration, with calculation
times compatible with real-time forecasting.

2 Urban context of Dakar

Dakar, the capital of Senegal, hosts 50 % of the country’s
urban population over only 0.3 % of the national territory
(ANSD, 2013). Its urbanisation took place rapidly, in a few
decades, largely sustained by the flows of rural exodus fol-
lowing the drought of the 1970s. The largest concentrations
of population (Fig. 1) are found in the suburbs and the new
extension areas of the city (Lessault and Imbert, 2013). Vul-
nerability is further exacerbated by the poor coverage of ad-
equate rainwater drainage systems. Thus, since 2005, Dakar
has been subject to floods that have strongly affected the pop-
ulation and their living environment, the infrastructures, the
economy and the environment. There is a growing interest in
characterising and reducing the impacts of floods in a context
of intense rainfall and rapid urbanisation.

3 Data

The study area covers the communes of Pikine-Guédiawaye
(Fig. 2), where the data were most detailed. These data come
from the Dakar urban database set up at the DPGI (Direction
de la Prévention et de la Gestion des Inondations au Séné-
gal) and the DTGC (Direction des Travaux Géographique et
de la Cartographie). These are: (i) the Digital Terrain Model
(DTM) of 10 m resolution from which the water flow paths
are determined, (ii) the location of buildings, which consti-
tute obstacles to the surface water flow, (iii) the buried and
surface drainage channels and pipes which can modify or re-
place natural pathways, (iv) the rainwater retention basins.

4 Methodology

The methodology for processing the DTM and modifying it
to integrate the drainage directions induced by both the lo-
cation of buildings, drains and retention basins has been de-
scribed in detail by Diémé et al. (2022). The general princi-
ples are recalled in the following.

4.1 DTM processing

The DTM is the basis for the method of constructing the
drainage topology. From this DTM, the natural drainage di-
rection in one of the 8 directions is determined for each grid
cell over the test area (Jenson and Domingue, 1988). All the
drainage directions are then forced to integrate successively
the obstacles to water flow, the stormwater collectors and the
retention basins.

4.1.1 Include water flow obstacles in the DTM

The principle for forcing flows through obstacles is to raise
the elevations corresponding to these obstacles (here the ur-
ban blocks) by 20 m in the DTM. This will have the effect of
preventing flows from crossing these obstacles. This classic
operation can be carried out with GIS tools (ArcGIS, Qgis)
or in the Vicair module of the ATHYS modelling platform
(http://www.athys-soft.org/, last access: 22 May 2022).

4.2 Integration of the stormwater drainage

The drainage model forced by the building is used as a basis
for integrating the modifications according to the location of
the stormwater drainage. The algorithm developed for this
purpose in the Vicair module considers the rasterised plan
of the drains, identifies the two upstream and downstream
ends of each section and then orients the drainage directions
along the section from the higher end to the lower end. The
elevations are read from either the DTM or an attribute table
entered to take into account buried collectors. The final result
is a drainage model forced by both the urban blocks and the
pluvial drains.

4.3 The integration of retention basins

The retention basins are located in the previously defined
drainage model using the rasterised plan of their location.
The algorithm developed in Vicair determines the outlet of
each basin by searching for a channel mesh whose direc-
tion of flow drains the basin; all the basin meshes are then
oriented towards this outlet. The method thus allows the
construction of a drainage model forced by urban blocks,
drainage channels and retention basins (Fig. 3).

5 Flow modelling

The study area was discretised into elementary catchments
with an urban area of approximately 10 ha, an algorithm in
the Vicair module. The flow network is defined as the meshes
that drain more than one hectare.

The hydrological model SCS-LR (Soil Conservation Ser-
vice – Lag and Route) first calculates the flood hydrographs
at the outlet of each catchment, taking into account the type
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Figure 1. Location of the Dakar agglomeration.

Figure 2. Geographical data modifying flow directions: (a) DTM, (b) buildings, (c) channels and retention basins.

of land use. These hydrographs are then injected and propa-
gated in the network by the KW (Kinematic Wave) hydraulic
model.

The parameters required for the SCS production model are
S (maximum capacity of soil water) and Ia (losses before

runoff). These parameters were calibrated based on rainfall-
runoff observations made by Bassel (1996) in the Fann-
Mermoz experimental basin. According to these data, the de-
cennial runoff coefficient in the basin is equal to the build-
ing coefficient (0.2), which led to consider S = 120 mm and
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Figure 3. Forced drainage directions according to urban blocks
(grey), drains (yellow) and retention basins (blue).

Figure 4. Density of urbanisation at the level of each urban block
(%).

Ia= 0.2 mm. The parameterization and spatialization of the
production on the study area was done using the GIS layers
of the buildings to estimate the density of the urbanization
at the scale of each urban block (Fig. 4) and to classify the
production units according to the types of density: not urban-
ized, not very dense urbanization, medium dense and very
dense. For very dense urbanisation class (75 % to 93 %) we
find S= 5 mm, Ia= 0.2 mm which corresponds to a runoff
coefficient of 0.92.

The LR transfer model applied for the elementary basins
has two parameters Vo which is the transfer velocity (in
m s−1) on each mesh and Ko the proportionality coefficient
between translation and diffusion. Based on the study by
Bassel (1996), the parameter Vo was set to 1 m s−1 and Ko
was left at 0.7 by default.

The flow through the collectors is taken into account by
the KW hydraulic model by considering the hydraulic prop-
erties of the collectors (roughness, width and depth) and the

Table 1. Constitution of the width and depth classes of storm drains.

Classes Strickler Width Depth

1 50 0.5 0.5
2 50 1 1
3 50 2 1
4 50 3 1
5 50 4 1
6 50 5 1

slope of the land. The slopes were smoothed by moving aver-
age over 50 meshes downstream of the mesh considered. The
roughness Strickler coefficient was set at 50 m1/3 s−1 for all
the collectors (297). The dimensions of the drains are avail-
able in the attribute table of the drains layer and 6 classes
(Table 1) of drains were finally considered.

The functioning of the reservoirs is regulated by a volume-
height-discharge rate law, specific to each reservoir. The ab-
sence of information on their storage capacity affects the re-
sults of the simulations and could therefore overestimate or
underestimate their true operation.

The outputs of the simulations are the hydrographs at the
outlet of the elementary basins and the water heights in the
reservoirs (Fig. 5), and the mapping of the overflows (Fig. 6).

The overflow points are identified by the difference be-
tween the flows simulated by the model and the capacity of
the network to evacuate the simulated flows (Fig. 6). This ca-
pacity was estimated by applying the Kinematic Wave model
at full load. The example in Fig. 6 corresponds to a 100-year
design rainfall applied as input to the model. The design rain-
fall model was built according Desbordes and Raous (1980),
combining a total rainfall duration of 4 h and an intense rain-
fall phase of 1 h, for return periods of 2 to 100 years. The
maximum intensities were deduced from the IDF curves pro-
duced for Senegal by Sane et al. (2018).

6 Discussion

The method provides maps of the severity of overflows from
drainage structures for different rainfall intensities and tak-
ing into account local urban conditions. The model has the
advantage of covering an entire agglomeration with a fine
resolution (5 m), short calculation times (typically 5 min)
compatible with real-time forecasting applications of pos-
sible overflow risks (monitoring of alert coasts). It is also
applicable in project mode to assess the impact of future
urban developments and to develop flood risk prevention
policies. However, there are some limitations in this work.
For the construction of the drainage topology, not all ob-
stacle objects have been taken into account (gullies, walls,
road interchanges). The use of a lidar, which is emerging
in African cities, would allow to refine the construction of
the drainage topology. The implementation of the hydrolog-
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Figure 5. Elementary hydrographs and water levels in storage basins.

Figure 6. Identification of the overflow points of the drains accord-
ing to different flow rates (m3 s−1).

ical production-transfer (SCS-LR) and hydraulic propaga-
tion (KW) models applied to this topology can be improved
through the equipment of experimental basins to better fix
the values of the different parameters to be calibrated, insofar
as there are uncertainties on the historical data exploited for
this study. Also, the simulations were done without a perfect
knowledge of the dimensions (width, depth, . . . ) of all storm
drains. This raises the question of the constitution of a quality
urban spatial database to help improve the results of the sim-
ulations. The validation of the model remains a perspective
of this work through feedback (comparing the simulations
with recent flood situations).

7 Conclusions

The method is based on 2 steps, consisting of reconstruct-
ing the drainage directions on natural and urban object mod-
ified terrain, and then applying hydrological and hydraulic
modelling. The method can be applied either for real time
forecast or for design mode). It covers the whole agglomer-
ation at a fine spatial scale (5 m), with fast calculation. Its
main purpose is to produce simulations of flows and network
overflow points that are sufficiently informative in real time
or in project mode, to guide the deployment of emergency

services in the field, in real time or to diagnose the opera-
tion of the network in project mode, or to initiate actions at
strategic locations. The representation of the overflow points
is associated with a one-dimensional 1D model, and provides
the boundary conditions for applying 2D hydraulic models in
order to determine locally the impact of the overflow of the
structures on limited areas.

The method seems flexible and adaptable to different con-
texts, and facilitated by the development of open-source
global platforms and the possibility of accessing spatial data.
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