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Abstract. Global climate changes significantly contribute to increased frequency of hydrologic extremes. This
significantly underestimates the hydrologic design parameters, bringing of hydro systems to increased failure
risk. In order to address this concern, the current practice of development of hydrologic frequency tools need
to be updated accounting for non-stationarity. This study first considered a diverse set of statistical tests to ex-
amine the trend, change points, non-stationarity and randomness of streamflow, rainfall and temperature time
series of scales ranging from daily to annual. The annual maxima time series indicated non stationarity against
the stationary behaviour of daily series of hydro-meteorological datasets of the basin. Subsequently, this study
developed the Temperature Duration Frequency (TDF), Rainfall Intensity Duration Frequency (IDF) and Flood
Frequency (FF) curves of Greater Pamba river basin in Kerala India, the part of which was most severely affected
by the near century return period flood event of 2018. The analysis was performed for a multitude of combina-
tions of variations in distribution parameters with time and climatic drivers as physical covariates in the extreme
value formulations. The study proposed a novel wavelet coherence (WC) based driver selection of most dom-
inant combination of climatic precursors in developing FF and IDF relations of three locations of Kalloopara,
Malakkara and Thumpamon and TDF curve of Kuttanad region in the basin, considering data of 1985–2015
period. The proposed WC framework considers bi-multi-and partial effects of climatic oscillations (COs) like El
Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO) and North
Atlantic Oscillation (NAO) in identifying potential drivers. The different WC formulations captured in-phase
relationships of streamflows and rainfall with COs at intra-annual, annual and inter annual scales up to 4 years.
The methods showed that addition of climatic precursors improved the NS estimates of flood and rainfall quan-
tiles by more accurately capturing the magnitudes of extreme streamflows and rainfalls of 2018, 2021 than the
time covariate formulations. However, the role of COs on extreme temperature is not found to be influential in
developing TDF relationships, which needs further investigation.

Keywords. Streamflow; non-stationarity; wavelet; frequency; cli-
matic oscillation

1 Introduction

Unpredictable climate variations result in the occurrence of
hydrological extremes like floods, droughts etc prompting
the exploration of spatiotemporal variability of future ex-
treme streamflow (SF), rainfall (RF) and temperature (Temp)

events. To evaluate the consequences on such extreme events
due to the uncertainty of projected climate changes, the study
on SF, RF and Temp frequency analysis (FA) is indispens-
able. The hydrologic design parameters are gravely under-
stated by these extremes, increasing the danger of failure for
the hydro systems. Taking into account non-stationarity in
the distribution parameters will allow the existing method of
developing hydrologic frequency tools to be modified in or-
der to meet this issue. The introduction of covariates such
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as climatic oscillations (COs) and time into the parameters
of distribution, so as to deal with the non-stationarity in the
hydro-meteorological variable data set is considered to be
a widely used technique (Katz et al., 2002; Khaliq et al.,
2006; Adlouni et al., 2007). Applications for a wide vari-
ety of hydro-climatic extremes, including RF (Ouarda et al.,
2019), floods (Villarini et al., 2009), and air temperatures
(Ouarda and Charron, 2018), has already been established
using this approach.

The wavelet analysis methods are gaining much accep-
tance while dealing with the analysis of highly irregular,
complex, and intermittent non-stationary (NS) time series.
For capturing the dominating periodicity and multiscale re-
lationship between two time series, the continuous wavelet
transform and bivariate wavelet coherence (BWC) analysis
are frequently utilised (Torrence and Compo, 1998; Grin-
sted et al., 2004). Hu and Si (2016) proposed the multi-
ple wavelet coherence (MWC) approach as an extension of
BWC. Mihanovic et al. (2009) introduced the concept of par-
tial wavelet coherence (PWC), thereby evaluating the stand-
alone dependence of two variables via a statistical way, af-
ter eliminating the effect of other likely governing variables.
The concept of wavelet coherence is applied in this study
for estimating the teleconnections between different COs and
hydro-meteorological variables resulting in the identification
of prevalent climatic precursors which can be employed as
covariates in the distribution parameters for the development
of NS models for non-stationary frequency analysis (NSFA).

India is a country with an extensive river network and SF is
considered as the major source of water supply for irrigation
and industrial purposes. It is crucial to understand the RF and
SF dynamics along with Temp variations to quantify the in-
fluence of global climatic drivers at basin scale for improved
decision-making. It is well understood that a diverse set of
Climatic drivers are influencing the hydro-climatic process of
India (Adarsh and Janga Reddy, 2016). Kerala meteorologi-
cal subdivision of southern India is becoming climatically
sensitive in the recent past and the signatures of the same are
evident in the form of extreme floods (Anandalekshmi et al.,
2019). This study aims to conduct the FA of SF, RF, Temp ex-
tremes of Greater Pamba river basin (GPRB), Kerala, India,
which is one of the most affected regions in the extreme rare
Kerala flood event of 2018, with covariate dependent distri-
bution functions to characterize these extreme events in a NS
framework. This study aims (i) to propose a wavelet-based
framework for identification of dominant covariate in NS fre-
quency formulations; (ii) to develop NS Intensity-Duration-
Frequency (IDF) curves, Flood Frequency (FF) curves and
Temperature-Duration-Frequency (TDF) for GPRB, incor-
porating the dominant climatic precursors obtained from pro-
posed WC framework.

2 Study Area and Data used

The Greater Pamba river basin consists of rivers Pampa,
Manimala and Achencovil rivers flowing through Kerala
encompassing the districts of Pathanamthitta, Alappuzha
and Kottayam. The three basins of Achenkovil (1484 km2),
Pamba (2235 km2) and Manimala (847 km2) together form
the GPRB with total drainage area of 4566 km2 and it is
classified as a medium-sized basin. The distinct character-
istics of three different basins comprised within the GPRB
highlight the need for conducting NSFA for the same hydro-
meteorological variable recorded in multiple stations. Three
SF stations, seven RF stations and one Temp station are con-
sidered for the study. The daily SF data for SF1-Kalloopara,
SF2-Malakkara and SF3-Thumpamon stations were obtained
from India Water Resource Information System (IWRIS)
(https://indiawris.gov.in/wris, last access: 3 February 2021).
The daily RF and Temp data were gathered from India
Meteorological Department (IMD) at a high-resolution of
0.25°× 0.25° (Pai et al., 2014) and 1°× 1° (Srivastava et al.,
2009) gridded data set respectively. All the datasets were col-
lected for a span of 31 years (1985–2015). In case of NSFA,
the daily SF data was converted to annual maximum SF for
the development of FF curves. While the daily RF data was
used to extract annual maximum series for 10 durations (1,
3, 6, 12, 18, 24, 36, 48, 60, 72 h) to develop IDF curves and
the daily maximum Temp data was extracted to annual max-
imum Temp over 6 durations (1, 2, 4, 6, 8, 10 d) for develop-
ing TDF curves. The locations of the hydro-meteorological
stations and grid points are indicated in Fig. 1. Four large-
scale COs namely, El Niño Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO), Pacific Decadal Oscilla-
tion (PDO) and Indian Ocean Dipole (IOD) are considered as
potential drivers for teleconnection analysis (Krishnamurthy
and Goswami, 2000; Krishnan and Sugi, 2003; Mokhov et
al., 2012; Li and Chen, 2014; Azad and Rajeevan, 2016;
Rathinasamy et al., 2019; Yeditha et al., 2022). The cli-
matic indices are taken from https://psl.noaa.gov/gcos_wgsp/
Timeseries/ (last access: 3 February 2021) for the period
1985 to 2015.

3 Methodology

3.1 Statistical analysis

A number of statistical tests are used to analyse the temporal
variance in the SF, RF, and Temp time series. The study of
descriptive statistical analysis includes looking at concepts
like trend, stationarity, change point, and randomness. Trend
in the timeseries is estimated using MK test (Mann, 1945;
Kendall, 1975) and Sen’s slope test (Sen, 1968). The trend
analysis shows general trend in a time series, but the station-
arity test shows how the mean and variance vary with time.
The Augmented Dickey-Fuller (ADF) (Dickey and Fuller,
1979) and KPSS test (Kwiatkowski et al., 1992) are used
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Figure 1. Location of hydro-meteorological stations and grid points in GPRB, Kerala, India.

for testing stationarity of different time series, at 5 % signif-
icance. The significant homogeneous and non-homogeneous
nature of the times series was tested by Pettit’s change
point test (Pettit, 1979), Standard Normal Homogeneity test
(Alexandersson and Moberg, 1997) and Buishand range test
(Buishand et al., 2008). Randomness of the chosen variable
time series of each station were tested using Runs test.

3.2 Wavelet Coherence analysis

A wavelet is defined as a small wave which has good abil-
ity in representing a signal locally in both time and fre-
quency domains. The fundamental principle of wavelet trans-
forms (WT) is to decompose the time series into its wavelets
which are scaled and translated version of the mother wavelet
(Torrence and Compo, 1998; Grinsted et al., 2004). The
key benefit of using WT is that it reveals the hidden non-
stationarity information in the original variable. The con-
tinuous wavelet transform (CWT) has been widely used for
hydro-climatic teleconnection studies, while discrete wavelet
transform (DWT) is popular for hydrological forecasting
(Sang, 2013; Nourani et al., 2014). While CWT work on all
the scales to analyse time series but the coherence will be
significant only at certain time scale and their strength also
differ with time scale. Considering the benefits of WT, meth-
ods like cross-wavelet analysis (XWT) and wavelet coher-

ence (WC) have also become effective instruments for exam-
ining potential connections between two signals (Grinsted et
al., 2004). XWT identifies only the regions with a high com-
mon power in the two-time series and WC measures how
coherent XWT is in the time-frequency domain.

BWC quantifies the relationship between two variables,
i.e., one hydro-meteorological variable and one CO. MWC is
important to assess the simultaneous influence of more than
one teleconnection at various timescales. Apart from this,
PWC is accomplished to determine the standalone relation-
ship between a CO and hydro-meteorological variable. For
instance, two COs, ENSO and IOD, which are both highly
connected, may have an impact on streamflow (SF2). In this
case, WC analysis of the link between SF2 and IOD au-
tomatically takes ENSO’s impact into account. This could
lead to a misinterpretation of the true connection between
SF2 and IOD. Hence solitary impact of each CO on hydro-
meteorological variable must therefore be investigated using
PWC.

In the case of teleconnection investigations, it is desirable
to examine the relationship between two time series (hydro-
meteorological variable and CO) in the time-frequency do-
main. However, the use of all scales results in redundant
data, which significantly raises the cost of calculation and
lowers the model’s performance. In this study, application
is for identifying the dominant driver using wavelet analy-
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Figure 2. Time–frequency spectra of hydro-meteorological variables.

sis, for which, quantifying the strength is essential. There-
fore, the relative dominance of single or multiple COs on the
hydro-meteorological variable is measured using the Average
Wavelet Coherence (AWC) and the Percentage of Significant
Coherence (PoSC) (Song et al., 2020; Sreedevi et al., 2022).
By averaging the WC generated across all dominant scales
using the obtained coherence values, the AWC may be de-
termined. The PoSC can be calculated by dividing the total

number of power values created in the WC computation by
the number of significant power values. Greater dominance is
indicated by higher PoSC and AWC scores. Even though the
coherence between COs and hydro-meteorological variables
may grow with the addition of more COs, an increase in the
PoSC value of at least 5 % must be seen in order to draw the
conclusion that the new addition has any practical impact.
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Figure 3. BWC and MWC spectrum of COs with SF2-Malakkara station.

3.3 Development of S and NS models

The Cumulative Distribution Function (CDF) of Generalized
Extreme Value (GEV) distribution used for developing FF,
IDF and TDF relationship is

F (x,µ,σ,ξ )= e−Q(x) (1)

Where,

Q(x)=

{ [
1+ ξ

(
x−µ
σ

)]−1/ξ
, ξ 6= 0

exp
[
−

(x−µ)
σ

]
, ξ = 0

Where µ= location parameter, σ = scale parameter and
ξ = shape parameter.

In the NS case, the distribution parameters namely loca-
tion and scale parameters are made dependent on covariates
which can represent a CO or time. The shape parameter of the
GEV is kept as a constant. The COs required for developing
NS models were chosen based on the dominant COs obtained
from the WC analysis. Table 1 indicates the best NS models
used in this study. The method of Maximum Likelihood es-
timation (MLE) (Khaliq et al., 2006) is used for parameter
estimation and the best fit model is identified with the help
of Akaike Information Criterion (AIC) (Akaike, 1974). The
model resulting in smallest AIC value is considered to be the
best performing model.

The NS return levels for various return periods, RPs (T in
years) are computed using Eq. (2). In the case of NS models,

Table 1. Development of Stationary and Non-Stationary models.

Model name Model Parameters

SGEV µ, σ , ξ
NSGEV1 µt = µ0+µ1 Time, σ , ξ
NSGEV2 µt = µ0+µ1 ENSO, σ , ξ
NSGEV3 µt = µ0+µ1 NAO, σ , ξ
NSGEV4 µt = µ0+µ1 PDO, σ , ξ
NSGEV5 µt = µ0+µ1 IOD, σ , ξ
NSGEV6 µt = µ0+µ1 ENSO+µ2 NAO, σ , ξ
NSGEV7 µt = µ0+µ1 ENSO+µ2 PDO, σ , ξ
NSGEV8 µt = µ0+µ1 ENSO+µ2 IOD, σ , ξ
NSGEV9 µt = µ0+µ1 NAO+µ2 PDO, σ , ξ
NSGEV10 µt = µ0+µ1 NAO+µ2 IOD, σ , ξ
NSGEV11 µt = µ0+µ1 PDO+µ2 IOD, σ , ξ

95 percentiles of the covariate dependent parameters from
the past observations are taken as a representative value for
the location and scale parameters.

I =

 µ̂+ σ̂

ξ̂

[(
− log

(
1− 1

T

))−ξ̂
− 1

]
, ξ̂ 6= 0

µ̂+ σ̂
[
− log

(
− log

(
1− 1

T

))]
, ξ̂ = 0

(2)
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4 Results and Discussions

4.1 Statistical analysis

The mean, standard deviation, skewness, kurtosis, minimum
and maximum values of the chosen SF, RF and Temp sta-
tions belonging to GPRB was computed. All the datasets are
positively skewed to the right with high skewness except for
Temp data set which is slightly skewed. In terms of kurto-
sis, all the data sets have a leptokurtic distribution (k > 3;
sharply peaked with heavy tails) while Temp data set have
a platykurtic distribution (k ∼ 0; flat peak and has more dis-
persed values with lighter tails). Sen’s slope test was used to
evaluate the size of the change while the MK test was used to
determine the significance of the trend. All the RF grid points
and SF1 station was found to have an increasing trend, while
Temp and SF2, SF3 stations followed a decreasing trend. Ac-
cording to ADF test, SF1, RF4 and RF5 were found to be
stationary while others were non-stationary whereas in the
case of KPSS test, all the stations except for RF6 and RF7
were found to be stationary. The results of the change point
analysis pointed to a considerable sudden change at each lo-
cation. All the data sets were proved to be non-random in
nature of occurrence with the help of Runs test. The overall
results of the statistical analysis pave way to the presence of
trend, non-stationarity, inhomogeneity and non-randomness
in the SF, RF and Temp data sets.

4.2 Wavelet Coherence analysis

The WC analysis observed annual periodicity (8–16 months)
for most of the time series for all stations, except for RF1
and RF3. Lower periodicities (2, 4 and 6 months) are ob-
served mainly for Temp station, but there is localized pres-
ence in various time domain for the same periodicities for
SF and RF stations as well. A pictorial representation of the
same is given in Fig. 2. The results of BWC analysis of SF2
(Malakkara) station with the COs are presented in Fig. 3
along with two samples of MWC as well.

Due to space constraints, the BWC, PWC and MWC re-
sults obtained for one sample station; SF2 (Malakkara) sta-
tion is only discussed in detail. BWC analysis for SF2-ENSO
and SF2-NAO doesn’t show any significant periodicity, how-
ever some localized contours were found around the peri-
odicity of 2–48 months. For SF2-IOD across the time peri-
ods of 1990–2003, 2005–2007, and 2011–2014, the coher-
ence correlations predominately range between periodicities
of 8–16 months. In the case of SF2-PDO inter-decadal ranges
were observed for the period 1988–1998 with a periodicity
of 32–64 months. Higher AWC and PoSC values were ob-
tained for SF2-IOD (AWC= 0.478 and PoSC= 25.03). The
combined influence of PDO and IOD produced the high-
est coherence values for SF2 station for MWC-two factor
analysis (AWC= 0.75, PoSC= 41.71). Among the three-
factor scenarios, the ENSO, PDO and IOD combination pro-

Table 2. Comparison of dominant COs by WC analysis and best
NS models.

Hydro-meteorological Dominant COs Best NS
variables by WC analysis models

SF1 PDO NSGEV4
SF2 IOD NSGEV5
SF3 IOD NSGEV5
Temp ENSO NSGEV8
RF1 PDO NSGEV7
RF2 PDO NSGEV4
RF3 IOD NSGEV5
RF4 IOD NSGEV5
RF5 IOD NSGEV5
RF6 IOD NSGEV5
RF7 IOD NSGEV5

duced the highest coherence score. On considering all the
COs, the coherence value was at its maximum (AWC= 0.93,
PoSC= 48.03).

All of the PWC’s AWC and PoSC values were lower than
the BWC readings. The maximum reduction in PoSC value
resulted in ENSO (from 23.36 %) after the removal of NAO
(to 5.44 %) and PDO (to 7.32 %) from it. The removal of
IOD had very less effect on ENSO. The influence of PDO on
SF2 station is highly influenced by ENSO, NAO and IOD.
PWC results of IOD and NAO showed less reduction in PoSC
values which also indicates that IOD and NAO are not be-
ing strongly modulated by other COs. Similarly bi-multi-and
partial effects of COs on all the other hydro-meteorological
variables were evaluated. IOD, PDO, ENSO and its combi-
nations were found to be more influential for all the hydro-
meteorological variables in general.

4.3 Stationary and Non-Stationary models

The S and NS analysis was carried out for all the hydro-
meteorological variables by developing GEV models as men-
tioned in Sect. 3.3 using all possible combinations of Time
and CO as covariate and the best fit model was identified
with the help of AIC values (Table 2). The FF, IDF and
TDF curves developed for corresponding stations based on
the best fit NS model is given in Figs. 4 and 5. It can be
seen that all the best fit NS models were based on CO for-
mulations. Additionally, it should be highlighted that the
CO, which showed a strong teleconnection with the hydro-
meteorological variable in relation to AWC and PoSC val-
ues, emerged as the best covariate that addresses the non-
stationarities in terms of climate-induced NS model for FF,
IDF and TDF analyses. For instance, the best NS model ob-
tained for SF2-Malakkara station is location parameter lin-
early varying with IOD as covariate and it can be clearly
seen that the most dominant CO for SF2 station is IOD as
per AWC and PoSC values of WC analysis as discussed
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Figure 4. S and NS FF curves of SF stations.

in Sect. 4.2. The same was applicable for all the hydro-
meteorological stations. The findings, which are summarised
in Table 2, support the conclusion that the dominating COs
derived from the WC analysis turned out to be the best co-
variate to describe NS behaviour of the respective hydro-
meteorological stations. As a result of this study, it can be
inferred that using a wavelet-based framework to identify
dominant covariates will significantly help in determining
the best covariate to describe each station’s non-stationary
behaviour. Also, teleconnection investigations over various
frequency-time scales using BWC, MWC and PWC helped
in the identification of key temporal features or events in a
signal, such as discontinuities, rapid leaps and shifts, and pat-
terns of dominant variability over the chosen time period.

The physical connections between the covariates and the
local hydrology of GPRB was also examined to validate our
findings. For instance, Maximum flood discharge of the basin
(1988 cumecs) was recorded in the year 1994, a year with a
predominately positive IOD event (Kumar et al., 2019). Also,
the peak annual maximum temperature was observed in the
year 1997, where the combined effect of ENSO and IOD
was significantly predominant (Kumar et al., 2019). The re-
sults obtained using the best-fitting NS model, NSGEV8, for
the Temp grid point, where the location parameter varies lin-
early with ENSO and IOD, validates the same. Hence, it can
be concluded that the annual maximum value of the hydro-

meteorological variable peaked in the year where their re-
spective best fit CO (Tables 1 and 2) effect was predominant.
Additionally, the SF, RF and Temp return levels for various
RPs were predicted using S and NS model with time and COs
as covariates. A sample of 2018 and 2021 floods predicted
for SF2 station using all the three models is shown in Fig. 6.
According to the Central Water Commission’s (CWC) “Re-
port on Kerala Flood and Solutions” from 2018, the return
period of the 2018 Kerala flood was unquestionably greater
than 100 years, leading to the conclusion that the addition of
climatic precursors improved the prediction of NS estimates
of the SF and RF quantiles when compared to S and time co-
variate formulations (Fig. 6), but that this was not the case for
the temperature return level, which requires further research.

This study proposed a novel framework in developing NS
models based on the identification of best covariates us-
ing WC analysis, based on the assumption that the non-
stationarity of the signal is well explained by the CO. It is
worth noting that the model complexity increases while try-
ing to incorporate non-stationarities related to climate change
and variability. Hence, it is quite evident that model uncer-
tainty will also increase as the complexity increases. Uncer-
tainty analysis of NS models is an area which requires further
exploration and future works are needed to access the uncer-
tainty at covariate and parameter scale for developing reliable
NS models.

https://doi.org/10.5194/piahs-385-163-2024 Proc. IAHS, 385, 163–173, 2024



170 A. Nair et al.: Developing NS frequency relationships for Greater Pamba River basin

Figure 5. S and NS TDF and IDF curves of Temp and RF stations.

Proc. IAHS, 385, 163–173, 2024 https://doi.org/10.5194/piahs-385-163-2024



A. Nair et al.: Developing NS frequency relationships for Greater Pamba River basin 171

Figure 6. 2018 and 2021 Predicted flood levels of SF2 (Malakkara)
station.

5 Conclusion

The hydro-meteorological variables namely, three SF, one
Temp and seven RF stations belonging to GPRB were found
to have significant trend, non-stationarity, inhomogeneity
and non-randomness in the dataset. The main focus of the
study is to develop FF, IDF and TDF relationships in a NS
framework by incorporating COs and Time as covariates in
the distribution parameters. Out of the four chosen COs,
the most dominant climatic precursors were identified us-
ing WC analysis. A multitude of combinations of COs with
the hydro-meteorological variables were analysed via CWT,
BWC, MWC and PWC. According to AWC and PoSC values
of wavelet coherence analysis, it is discovered that IOD has
a major impact on the basin scale hydrology. The creation of
the NS model for FA was greatly aided by the covariate se-
lection made using the WC based driver selection of the most
dominating combination of climatic precursors. It was found
that NS models where location parameter is varying in cor-
respondence with IDO, PDO, ENSO and its combinations
turned out to be the best fit models for the respective sta-
tions. In-phase correlations of SF and RF with COs at intra-
annual, annual, and inter-annual periods up to 4 years were
captured by several WC formulations. The NS flood and RF
return level estimates were better with the addition of cli-
matic antecedents than with the time covariate formulations.
The same was verified by precisely simulating the severe SF
and RF magnitudes of 2018 and 2021 utilising CO as a co-
variate in NS models.
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