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Abstract. For many applications, it would be extremely useful to have insights into river flows at timescales
of a few weeks to months ahead. However, seasonal predictions of this type are necessarily probabilistic which
raises challenges both in generating forecasts and their interpretation. Despite this, an increasing number of
studies have shown promising results and this is an active area for research. In this paper, we discuss insights
gained from previous studies using a novel combined water balance and data-driven approach for two of Africa’s
largest lakes, Lake Victoria and Lake Malawi. Factors which increased predictability included the unusually long
hydrological response times and statistically significant links to ocean-atmosphere processes such as the Indian
Ocean Dipole. Other lessons learned included the benefits of data assimilation and the need for care in the choice
of performance metrics.

1 Introduction

Seasonal river flow forecasts aim to provide useful infor-
mation for operations and planning from weeks to months
ahead. Potential applications include water supply planning,
hydropower generation and irrigation scheduling. This is a
developing area both in terms of the technical approaches
used and interpretation of the outputs provided.

The forecasting techniques potentially available include
statistical approaches, ensemble streamflow prediction, and
the direct input of ensemble rainfall forecasts into hydrolog-
ical models. However, forecast skill depends on several fac-
tors, including seasonal influences and the catchment size,
location and antecedent conditions (e.g. Greuell et al., 2019;
Mendoza et al., 2017; Robertson and Wang, 2012; Sene,
2016). Often a key challenge is that the required forecast lead
times exceed hydrological response times, requiring a greater
reliance on long-range rainfall forecasts, with the many un-
certainties that entails.

One situation which can improve predictability is when
there is considerable storage in a catchment, such as from
snowpack, groundwater or large lakes and reservoirs. The
Rift Valley lakes of east and southern Africa provide one
such example, and due to their huge size, offer considerable

potential for deriving seasonal forecasts over operationally
useful timescales.

Here we describe insights gained from previous studies by
the authors into two of Africa’s largest lakes, Lake Victo-
ria and Lake Malawi. These flow into the White Nile and
Shire River respectively. A novel water balance and statisti-
cal approach was used, building on stochastic transfer func-
tion modelling techniques previously applied in a wide range
of environmental applications (e.g. Young, 2011; Tych and
Young, 2012). The approaches used are only briefly outlined
here, but are described in more detail in Sene et al. (2017,
2018) and Sene and Tych (2018).

In contrast, most previous studies have focussed on de-
veloping statistical links between river flows and external
drivers such as climate indices. For example, Siam and
Eltahir (2015) describe a Bayesian model for the Nile in-
corporating Indian and Pacific Ocean climate indices, while
Elganiny and Eldwer (2018) used Artificial Neural Network
and ARMA approaches. Gehad et al. (2017) have also com-
pared forecast skill with ensemble approaches for the Blue
Nile. For the Shire River, Jury and Gwazantini (2002) de-
scribe a seasonal forecasting model for Lake Malawi using a
statistical model including climate indices, and Jury (2014)
describes a detailed statistical analysis of links between cli-
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mate and hydrology using atmospheric model reanalyses and
satellite data.

In this paper, other topics discussed include the poten-
tial for real-time updating of model outputs using techniques
similar to those used in real-time flood forecasting, and the
choice of performance metrics to deal with a statistically
non-stationary response over timescales of months or more.
An analytical approach also provided useful insights. Finally,
some priorities for future research are considered in this chal-
lenging area, including the prospects for seasonal forecasting
for smaller lakes and river basins.

2 Methodology

2.1 The study area

Lake Victoria lies on the equator and its catchment spans six
countries: Burundi, the Democratic Republic of the Congo,
Kenya, Rwanda, Tanzania and Uganda (Fig. 1). It plays an
important role in hydropower generation, irrigation and wa-
ter supply in the region. The lake has some of the longest
hydrological records in Africa starting with routine observa-
tions of levels in the 1890s and rainfall a decade later, albeit
initially with a sparse network of rain gauges. Regular obser-
vations of outflows began in the 1940s, and flows have been
regulated for hydropower production since 1953. The lake
is the largest in Africa with surface and catchment areas of
about 68 000 and 194 000 km2.

Lake Malawi, also shown in Fig. 1, lies several hundred
kilometres to the south and its catchment is mainly in Malawi
and Tanzania, with a smaller contribution from Mozambique.
Level observations also began in the 1890s with regular out-
flow observations since 1948. The lake has been regulated
for hydropower production since 1965. Its surface and catch-
ment areas are about 28 750 and 95 570 km2.

For both lakes, regional rainfall is affected by the annual
passage of the Intertropical Convergence Zone (ITCZ). For
Lake Victoria, this results in two main rainfall seasons, which
are typically between March and May and October and De-
cember. In contrast, Lake Malawi lies near the southernmost
end of ITCZ excursions and much of the catchment experi-
ences a single main rainfall season from November to April
or May.

The datasets used for these studies are described in Sene
et al. (2017, 2018) and included rainfall, lake level and lake
outflow records. To provide the best possible data coverage,
extensive use was made of previously validated and infilled
values, many of which themselves relied on observations
and record extension techniques developed during an unusu-
ally intensive period of monitoring in the 1970s and 1980s
(WMO, 1982, 1983). This meant that monthly data availabil-
ity and completeness was particularly good and allowed the
focus to be on issues related to model structure and perfor-
mance, rather than trying to resolve issues due to sparse data.
Nevertheless, the records included some of the most extreme

flood and drought periods on record. The periods chosen for
analysis were 1925 to 1990 for Lake Victoria and 1954 to
1980 for Lake Malawi.

Several climate indices were considered for use in the
analyses. Exploratory work typically suggested a weak cor-
respondence with rainfall for El Niño indices at lag times of
a few months and a rather stronger correspondence with an
index for the Indian Ocean Dipole. Based on these studies,
the indices chosen for use in the simulations were NINO34
(Trenberth, 1997) and JAMSTEC’s estimates for the Dipole
Model Index (DMI) and illustrative results are discussed
later. More detailed studies into links to global and regional
climate typically suggest lag times of about two months
for Shire River flows (Jury, 2014) and values up to several
months for east Africa at a seasonal timescale (Nicholson,
2017), although there are many factors and variables to con-
sider when interpreting these findings.

2.2 Simulation techniques

The studies used an innovative approach to estimating lake
outflows, based on a combination of water balance and trans-
fer function techniques. Only brief details are given here
while the full methodology is described in Sene et al. (2017,
2018).

The starting point for the analyses was the water balance
for a lake, which can be expressed as:

dh
dt
= N (t)−

Qo(t)
A (t)

(1)

where h is the water level, N is the net inflow, Qo is the out-
flow, A is the surface area, and t is time. Based on previous
studies (e.g. Piper et al., 1986) the lake areas were assumed
to be constant and the lake outflows were estimated from an
equation of the form Qo = ah

b.
The net inflow is normally expressed in the following

form:

N = P (t)−E (t)+
Qi (t)
A (t)

= 1h+
Qo(t)
A(t)

(2)

where P andE are the lake rainfall and evaporation andQi is
the tributary inflow. Any additional terms which are difficult
to measure or estimate, such as groundwater seepage, were
considered to contribute to the overall model uncertainty.

To simulate the water balance, a data-driven stochastic
framework was adopted which has proven useful in many
other environmental applications, such as real-time flood
forecasting and assessing the long-term variability in climate
records (Beven, 2009; Young, 2013). Some advantages of
this approach are that few assumptions are required about the
statistical characteristics of the datasets used and the relation-
ships between them, and that estimates for the uncertainty in
model outputs are intrinsic to the approach.

A transfer function solution was sought, inspired by the
observation by Young (2011) that for the linear case (b = 1)
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Figure 1. Map of the Lake Victoria region (Source: IAHS Press and Sutcliffe and Parks, 1999) (left) and Lake Malawi (right).

Eq. (1) can be solved in this form without further approxi-
mation. The following more generalised form was adopted,
allowing for both serial dependence in model inputs and the
influence of external variables (ut ), such as climate drivers:

yt =
B

(
z−1)

A(z−1)
ut−δ +

D(z−1)
C(z−1)

et (3)

Here, A, B, C and D are polynomial functions and z−1 is the
backward shift operator z−iyt = yt−i .

The parameter values were estimated using a stochastic
recursive estimation approach, which also provides estimates
for the uncertainty in parameter values and how they vary
over time. Tych and Young (2012) and Young (2013) provide
more details.

2.3 Results and discussion

Similar techniques were applied to both Lake Victoria and
Lake Malawi and, again, the results are described in detail in
Sene et al. (2017, 2018). Here we draw out some key insights
which may be relevant to future studies of these two lakes and
to other large lakes in Africa.

2.3.1 Net inflows

The net inflows were estimated from the outflow terms in
Eq. (2) since, in principle, lake levels and outflows can be
measured and infilled with greater precision than the lake
rainfall and tributary inflows. This approach has been widely
used in previous studies (e.g. Piper et al., 1986) and avoided

the need to estimate the individual inflow terms for which
there can often be many uncertainties, particularly when
as here catchments are large and monitoring networks are
sparse. As a further refinement, values were expressed in
standardised form to focus on the underlying climate signals,
thereby helping to reduce the influence of bias in observa-
tions.

For Lake Victoria, cross correlation analyses suggested
that r2 coefficients with lake rainfall were highest (> 0.8) for
no time delay but still statistically significant with a 1 month
delay, whilst autocorrelation coefficients were highest for a
1 month delay. This provides an indication of the poten-
tial forecasting lead times for net inflow from rainfall vari-
ability alone whilst, in contrast, linkages with tributary in-
flows were considerably less. Similar results were obtained
for Lake Malawi and helped to inform the overall structure
of the model in Eq. (3).

2.3.2 Data assimilation

When forecasting river flows at short timescales, such as in
real-time flood forecasting, one widely used approach is to
update model outputs based on telemetry data. This approach
is called data assimilation and is effective over timescales
comparable with the hydrological response time of a catch-
ment. Clearly, this is unlikely to be the case in many seasonal
forecasting applications, but for a large lake like Lake Victo-
ria, given the huge storage influences it is potentially an op-
tion, and the use of this approach was a novel aspect of these
studies.
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Figure 2. Illustration of the reduction in annual peak level errors
for Lake Victoria at a lead time of 5 months when using a regression
model for the forecast residuals linked to climate indices (adapted
from Sene et al., 2018).

Various formulations were explored for the assimilation
component, including an error prediction approach and mul-
tiple regression models for the forecast model residuals.

The best forecast skill was obtained by incorporating both
El Niño and Indian Ocean Dipole indices into the regression
models at lag times of 5–7 months for Lake Victoria, and 6–9
months and 3–5 months respectively for Lake Malawi. This
gave better forecast skill than the more usual approach of
developing statistical relationships between rainfall and cli-
mate indices. In contrast, an Autoregressive Regressive Mov-
ing Average (ARMA) approach for the residuals alone only
provided benefits at lead times of 2–3 months.

2.3.3 Performance metrics

The data assimilation studies highlighted another important
issue, which was the choice of performance metrics to use.

The reason for this was that, for large lakes such as Lake
Victoria and Lake Malawi, one characteristic of the lake level
and outflow series is that, due to the huge storage, there
can be underlying longer term influences superimposed on
the daily and seasonal variations due to rainfall. This non-
stationary response requires special consideration and for
this study it was considered most important to focus on the
annual peaks in levels and outflows.

Figure 2 shows an example of this type of output, showing
the improvements in peak level estimates when climate in-
dices were included in the data assimilation component. This
example was for Lake Victoria and in future studies, a further
refinement would be to consider the timing errors in peaks as
well. Many other measures could be considered and this is a
worthwhile area for future research.

2.3.4 Analytical approaches

In some hydrological situations, an analytical approach can
also give useful insights, and for a lake it is possible to solve
Eq. (1) analytically for some integer values of b in the out-
flow term.

These analyses provided some useful additional insights
into the key timescales for lake response; for example, sug-
gesting that, following a sudden increase in net inflows, such
as during heavy rainfall, for both lakes an approximately ex-
ponential decay in levels might be expected over timescales
of 4–5 years, if inflows revert to their long-term mean values.

This provided further evidence of a non-stationary re-
sponse, and an indication of lake response times due to stor-
age, albeit for a highly idealized situation. Similar idealized
solutions might be sought in other seasonal forecasting ap-
plications although normally, of course, a numerical solution
is required for further insights.

2.4 Conclusions

This study has highlighted some methodological issues aris-
ing from exploratory studies into seasonal flow forecasting
using a data-driven approach. Some issues to consider in de-
veloping models for other lakes include the potential role of
climate indices in data assimilation, the choice of suitable
performance metrics and the value of simple analytical solu-
tions to explore the response.

Future studies might also consider the forecast skill gained
from including seasonal rainfall and air temperature forecasts
as model inputs for comparison with an ensemble stream-
flow prediction approach. The use of spatially varying (grid-
based) climate indices might also be considered and, for
smaller lakes, more consideration given to the spatial rela-
tionships between tributary inflows, perhaps at a daily time
step. The modelling framework described here might also be
developed further using a so-called State Dependent Parame-
ter approach to integrate the dynamic input-output model and
data assimilation components into a single modelling frame-
work, using a unified State Space form and estimated (fore-
cast) using Kalman Filter tools.

One key objective of studies such as these is to de-
velop techniques that could be used operationally. For large
lakes, perhaps the longest-established systems are for the
Great Lakes in the USA and Canada. These combine em-
pirical and physically based models, with precipitation and
air temperature outlooks and ensemble forecasts (Gronewold
et al., 2011; Bolinger et al., 2017). A Nile Basin Flow
Forecasting System is also at the planning stage and the
Eastern Nile Technical Regional Office (ENTRO) issues a
Flood Preparedness and Early Warning Bulletin during the
flood season, based on short to medium-range meteorologi-
cal forecasts. The WMO Hydrological Status and Outlooks
(HydroSOS) initiative (http://www.wmo.int, last access: 4
November 2021) is also considering Lake Victoria.

Proc. IAHS, 384, 289–293, 2021 https://doi.org/10.5194/piahs-384-289-2021

http://www.wmo.int


K. Sene and W. Tych: Seasonal flow forecasting in Africa 293

Data availability. No data sets were used in this article.

Author contributions. This paper draws on previous research by
the authors on seasonal flow forecasting using modelling techniques
developed jointly by the two co-authors (KS, WT), making use of
a software framework described in Tych and Young (2012). The
manuscript was prepared by KS with expert contributions from WT.

Competing interests. The contact author has declared that nei-
ther they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Hydrology of Large River Basins of Africa”. It is a result of the
4th International Conference on the “Hydrology of the Great Rivers
of Africa”, Cotonou, Benin, 13–20 November 2021.

Acknowledgements. We would like to thank the Centre for Ecol-
ogy and Hydrology for permission to use the datasets for Lake Vic-
toria referred to in this paper; also Michael Kizza for providing ad-
ditional independently derived records for comparison. The WMO
(1983) study was led by Chris Kidd and provides a valued contribu-
tion to understanding of the hydrology of Lake Malawi.

References

Beven, K.: Environmental Modelling: An Uncertain Future?, CRC
Press, UK, 2009.

Bolinger, R. A., Gronewold, A. D., Kompoltowicz, K., and Fry, L.
M.: Application of the NMME in the development of a new Re-
gional Seasonal Climate Forecast Tool, B. Am. Meteorol. Soc.,
2017, 555–564, 2017.

Elganiny, M. and Eldwer, A.: Enhancing the Forecasting of Monthly
Streamflow in the Main Key Stations of the River Nile Basin,
Water Resour., 45, 660–671, 2018.

Gehad, N., Doaa, A., Shokry, A., and Tahani, Y.: Flow forecasting
and skill assessment in the Blue Nile Basin, Nile Water Sci. Eng.
J., 10, 29–37, 2017.

Gronewold, A. D., Clites, A. H., Hunter, T. S., and Stow, C. A.:
An appraisal of the Great Lakes advanced hydrologic prediction
system, J. Great Lakes Res., 37, 577–583, 2011.

Greuell, W., Franssen, W. H. P., and Hutjes, R. W. A.: Seasonal
streamflow forecasts for Europe – Part 2: Sources of skill, Hy-
drol. Earth Syst. Sci., 23, 371–391, https://doi.org/10.5194/hess-
23-371-2019, 2019.

Jury, M. R.: Malawi’s Shire River Fluctuations and Climate, J. Hy-
drometeorol., 15, 2039–2049, 2014.

Jury, M. R. and Gwazantini, M. E.: Climate variability in Malawi,
part 2: sensitivity and prediction of lake levels, Int. J. Climatol.,
22, 1303–1312, 2002.

Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M.
P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An inter-
comparison of approaches for improving operational seasonal
streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935,
https://doi.org/10.5194/hess-21-3915-2017, 2017.

Nicholson, S. E.: Climate and climatic variability of rain-
fall over eastern Africa, Rev. Geophys., 55, 590–635,
https://doi.org/10.1002/2016RG000544, 2017.

Piper, B. S., Plinston, D. T., and Sutcliffe, J. V.: The water balance
of Lake Victoria, Hydrolog. Sci. J., 31, 25–37, 1986.

Robertson, D. E. and Wang, Q. J.: A Bayesian Approach to Predic-
tor Selection for Seasonal Streamflow Forecasting, J. Hydrome-
teorol., 13, 155–171, 2012.

Sene, K.: Hydrometeorology: Forecasting and Applications, 2nd
Edn., Springer, Dordrecht, 427 pp., 2016.

Sene, K. and Tych, W.: Some challenges in seasonal forecasting for
large lakes and reservoirs, Seasonal Forecasting: Meeting User
Needs, British Hydrological Society National Meeting, Lough-
borough, UK, 2018.

Sene, K., Piper, B., Wykeham, D., McSweeney, R., Tych, W., and
Beven, K.: Long-term variations in the net inflow record for Lake
Malawi, Hydrol. Res., 48, 851–866, 2017.

Sene, K., Tych, W., and Beven, K.: Exploratory studies into sea-
sonal flow forecasting potential for large lakes, Hydrol. Earth
Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-
2018, 2018.

Siam, M. S. and Eltahir, E. A. B.: Explaining and forecasting in-
terannual variability in the flow of the Nile River, Hydrol. Earth
Syst. Sci., 19, 1181–1192, https://doi.org/10.5194/hess-19-1181-
2015, 2015.

Sutcliffe, J. V. and Parks, Y. P.: The Hydrology of the Nile, IAHS
Special Publication no. 5, IAHS Press, Wallingford, ISBN 978-
1-901502-75-6, 192 pp., 1999.

Trenberth, K. E.: The Definition of El Niño, B. Am. Meteorol. Soc.,
78, 2771–2777, 1997.

Tych, W. and Young, P. C.: A Matlab software framework for
dynamic model emulation, Environ. Model. Softw., 34, 19–29,
2012.

WMO: Hydrometeorological Survey of the Catchments of Lake
Victoria, Kyoga and Mobutu Sese Seko, WMO Report, 1982.

WMO: A Water Resources Evaluation of Lake Malawi and the
Shire River, WMO Report No. MLW/77/012, 1983.

Young, P. C.: Recursive Estimation and Time-Series Analysis: An
introduction for the student and practitioner, 2nd Edn., Springer,
2011.

Young, P. C.: Hypothetico-inductive data-based mechanistic mod-
eling of hydrological systems, Water Resour. Res., 49, 915–935,
2013.

https://doi.org/10.5194/piahs-384-289-2021 Proc. IAHS, 384, 289–293, 2021

https://doi.org/10.5194/hess-23-371-2019
https://doi.org/10.5194/hess-23-371-2019
https://doi.org/10.5194/hess-21-3915-2017
https://doi.org/10.1002/2016RG000544
https://doi.org/10.5194/hess-22-127-2018
https://doi.org/10.5194/hess-22-127-2018
https://doi.org/10.5194/hess-19-1181-2015
https://doi.org/10.5194/hess-19-1181-2015

	Abstract
	Introduction
	Methodology
	The study area
	Simulation techniques
	Results and discussion
	Net inflows
	Data assimilation
	Performance metrics
	Analytical approaches

	Conclusions

	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	References

