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Abstract. Floods are natural disasters that widely affect people and goods. Its frequency and magnitude are
projected to substantially increase due to the ongoing environmental change. At regional and national levels,
some efforts have been made in predicting floods at a short-term range. However, the usefulness of flood predic-
tion increases as the time lead increases. The objective of this work is therefore to investigate flood sensitivity to
climate indexes in West Africa as a basis for seasonal flood forecasting. The methodology consists of optimizing
the relationship between Annual Maximal Discharge (AMD), a proxy for flood discharge and various climate
indexes using correlation coefficient, linear regression and statistical modeling based on 56 river gauging sta-
tions across West Africa. The climate indexes considered are the Sea Surface Temperature (SST) of the Tropical
Northern Atlantic (TNA), SST of the Tropical Southern Atlantic (TSA), the Sea Level Pressure (SLP) of the
Southern Oscillation Indexes (SOI) and the detrended El-Nino Southern Oscillation indexes. It was found that
SOI/SLP indexes are the most strongly related to the AMD for the investigated stations with generally high,
positive, and statistically significant correlation. The TSA/SST indexes indicated both positive and negative sta-
tistically significant correlations with river discharge in the region. The percentage change in AMD per unit
change in SOI/SLP for most of the statistically significant stations is within 10 % and 50 % indicating a strong
relationship between these two variables. This relationship could serve as a basis for seasonal flood forecasting
in the study area.

1 Introduction

Sea Surface Temperature (SST) plays a remarkable role in
spatial and temporal rainfall variability world widely. The
teleconnection between different phases of ENSO or El-
Nina and rainfall variability over Africa have been found
in many studies (Nicholson and Selato, 2000; Nicholson
and Kim, 1997). A clear relationship between rainfall and

SST has been demonstrated for Eastern Africa (Mutai and
Ward, 2000), Sahelian Africa (Dyer et al., 2017; Giannini et
al., 2004) and Western Guinean Africa (Balas et al., 2007).
Warming in the Indian ocean induces an increase in the Sa-
helian rainfall while the opposite implies a decrease in the
Sahelian rainfall (Dyer et al., 2017). In contrast to the Sa-
helian region, the relationships between rainfall and SST in
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West Guinean Africa are not generally symmetric as the same
SST pattern may enhance rainfall in one season, but reduce it
in the following season (Balas et al., 2007). Factors inducing
wet conditions are not necessarily the opposite or the reverse
of the one leading dry condition.

Likewise, the links between extreme rainfall in West
Africa and the large circulation pattern have received atten-
tion. Diatta et al. (2020) show that extreme precipitation in
the Sahel and Guinean coast is strongly associated with El
Niño 3.4 index (NINO.3.4) and other climate indexes. Ex-
treme rainfall pattern over the Sahel is likely influenced by El
Niño-Southern Oscillation (ENSO) and Mediterranean vari-
ability (Diakhaté et al., 2019) while extreme precipitation
in Ghana is shown to be significantly and positively cor-
related with the Atlantic Ocean SST and negatively corre-
lated with the Pacific and Indian basin SSTs (Atiah et al.,
2020). The teleconnection between rainfall characteristics
(including extremes) and climate indexes such as SST and
SLP could serve as a basis for seasonal rainfall forecast-
ing in West Africa during the regional climate outlook fo-
rum (http://acmad.net/rcc/presao.php, last access: 15 Febru-
ary 2020).

The knowledge of extreme rainfall is a good proxy for
flood assessment. However, other flood-related characteris-
tics such as high river discharge, flood magnitude, and flood
loss can also be influenced by the global circulation pattern.
At a global scale, flooding duration appears to be more sen-
sitive to the ENSO index than for flood frequency (Ward et
al., 2016) and ENSO exerts strong and widespread influences
on both flood hazard and flood risk (Ward et al., 2014c).
While the linkage between flood factors and climate indi-
cators has been extensively investigated in Europe, Asia and
America (See a review by Kundzewicz et al., 2019), infor-
mation on this teleconnection is very limited in Africa and
mainly in West Africa. Li et al. (2016) analyzed flood events
for 55 countries in Africa relatively to ENSO (SOI) years and
found a statistically significant relationship at a continental
level. A strong linear correlation between annual discharges
and ENSO was found in South Africa (Alemaw and Chaoka,
2006) and the Nile river basin (Siam and Eltahir, 2015). To
the best of our knowledge, no study specifically investigated
this topic in West Africa. There is therefore a need for filling
this gap. The objective of this work is to assess the sensitivity
of the annual maximal river flow of West Africa to different
climate indexes and explore their use for seasonal flood fore-
casting.

2 Data and methodology

Data used are the discharge data obtained from the Global
Runoff Data Center (GRDC) and some national hydrologi-
cal services in West Africa. The climate indexes used are the
tropical southern Atlantic indexes (TSA; NOAA, 2020), the
tropical northern Atlantic indexes (TNA; NOAA, 2020), the

El-Nino southern oscillation indexes (ENSO, JISAO, 2011)
and the Southern oscillation indexes (SOI; Climatic Research
Unit, 2019).

The block maxima approach (BMA) over the calendar
year was used for discharge data sampling since high dis-
charge is an excellent proxy for the river flood magnitude.
However, to avoid a preponderant missing data effect on the
BMA, the period of extraction of the annual maximal dis-
charge was limited to the rainfall season which spans gener-
ally from June to mid-November in West Africa. In addition,
the boxplot approach was used to identify possible outliers
in the extracted data following the approach of Chambers
et al. (2018). For any given station, after computing the in-
terquartile range IQR=Q(0.75)−Q(0.25), the lower adja-
cent value of the boxplot defined as the smallest value greater
of equal toQ (0.25)+1.5×IQR is identified. The upper adja-
cent value of the boxplot is defined as the largest observation
lesser than or equal toQ (0.75)+1.5×IQR. Values below the
lower adjacent are considered possible outliers due to miss-
ing data and are particularly screened.

The sensitivity of the AMD to the climate indexes was
first evaluated using the Pearson correlation. For stations in-
dicating significant correlation at 10 % level, a linear rela-
tionship between the AMD and a weighted mean of a given
climate index for different time steps was established. The ith
weighted mean (WMCIi) of four-monthly climate indexes
(JFMA for i = 1, FMAM for i = 2, . . . , MJJA for i = 5) was
computed as

WMCIi =
∑i+3

i
αi ×CIi

where CIi are the monthly climate indexes from January (i =
1) to August (i+3= 8). The coefficient αi were obtained by
optimizing the absolute correlation between the logarithm of
the AMD and WMCIi .

A significant correlation between the logarithm of the An-
nual maximal discharge of the j th station ln

(
Qmaxj

)
and the

climate indexes (WMCIi) imply that there is a linear relation-
ship between these two variables. Therefore, when both cor-
relation is statistically significant, the associated sensitivity
β to the variation of climate indexes is determined following
the approach of Ward et al. (2014) such as

ln
(
Qmaxj

)
= βi,j ×WMCIi +αi,j

with βi,j and αi,j the regression coefficients. A unit change
in WMCIi is associated with an average change of 100×
(exp(βi,j )− 1) in Qmaxj and it can be referred to as “sensi-
tivity” in percentage after Ward et al. (2014a).

3 Results and discussions

3.1 Selected River basins

In addition to the criteria indicated in the methodology, the
river gauging stations were further selected based on a mini-
mum data length of 30 years leading to the 56 stations (out of
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Figure 1. Selected West Africa basins, the associated data length,
and gauging stations.

150 initial stations) spread throughout the region. The study
area encompasses many transboundary basins such as the
Niger basin, the volta basin, and the complex Ouémé-Mono-
Couffo basin. Figure 1 presents the data length equivalent to
the number of years of data available. Among these stations,
50 % have a data length between 30 and 45 years, while for
45 to 60 years, it is 32.1 % of the stations. In the same way,
14 % of the stations indicated a data length between 60 and
75 years. For the data with the highest length (between 75
and 92 years), their percentage is about 3.6 % and these sta-
tions are in the Niger river.

3.2 Relationship between annual maximal discharge
and climate indexes

Figure 2 displays the correlation coefficient between the an-
nual maximal discharge over the selected basins and the four-
monthly weighted mean of four climate indexes (TSA/SST,
TNA/SST, SOI/SLP and El-Nino) with information shown
for statistically significant correlation. The strength of the
relationship with the AMD depends on the climate indexes
considered and the associated period. The strongest telecon-
nection with the river discharge in West Africa was found for
the SOI/SLP while the weakest was obtained for TNA/SST
indexes.

The sea level pressure of the southern oscillation indexes
shows a very high and positive correlation with the AMD in
West Africa compared to other climate indexes implying that
estimated flood discharge based on these indexes could pro-
vide a substantial basis for seasonal flood forecasting. The
SST indexes of the TSA indicated a good relationship with
river discharge in the region with no general spatial pattern
between the positive and negative correlation implying di-
verging effects. The maximal number of stations indicating
a significant correlation with climate indexes are obtained
in the period JFMA for TNA/SST (37.5 %), in MAMJ and
AMJJ for the detrended El-Nino indexes (44.6 %), in AMJJ
for TSA/SST (53.6 %) and, in MAMJ for SOI/SLP (83.9 %).
The SOI/SLP outperformed the other climate indexes irre-

spective of the period considered. Its minimum number of
stations indicating significant correlation is greater than the
maximum number of significant stations indicated by the
other climate indexes.

When considering the climate indexes of the first four
months of the year (JFMA), obtaining a significant and rel-
atively high correlation with a given station implies that
there are possibilities to estimate AMD of that station sev-
eral months ahead of flood season which generally is be-
tween July and October depending on the station location.
The time lead for the forecast would be two and one months
for the four-monthly climate indexes of respectively FMAM
and MAMJ.

The statistically significant correlation of the SST indexes
of the Tropical Southern Atlantic did not show any clear di-
rection about the sign of the correlation in contrast to the
TNA/SST and SOI/SLP which generally are positively corre-
lated with the AMD. The El-Nino indexes indicated a mostly
negative correlation with the AMD. The positive correlation
implies that AMD increases with an increase in the climate
indexes while the negative correlation implies that a decrease
in AMD is associated with an increase in climate indexes. A
combination of many climate indexes would help to improve
the obtained correlation. Generally, all the AMDs are statis-
tically correlated with at least one climate index.

3.3 Flood discharge sensitivity

Figure 3 presents the percentage change in annual maximal
discharge per unit change in climate indexes. The flood dis-
charge sensitivity varies substantially across basins and this
sensitivity increases as the SOI period gets closer to the
flood period. Generally, in the basins with significant corre-
lation, AMD varies mostly between 10 % and 50 % per unit
change in SOI/SLP implying a positive relationship. This
positive relationship is consistent with the findings of Ward
et al. (2014a) for the West Africa region. The highest sensi-
tivities are spread throughout the region with an emphasis on
the high latitude. The strength of the teleconnection between
the SOI/SLP and AMD varies depending on the period con-
sidered for the SOI/SLP. For instance, the highest percentage
(in term of the number of stations) for the sensitivity between
10 % and 50 % is 62.5 (Table 1) obtained while considering
the SOI/SLP for March to June which correspond to the first
rainy season in the West Africa Guinean Coast.

For the SOI of January to April, 39.3 % of the stations ex-
hibited a sensitivity between 10 % and 50 % implying that
substantial variation in the AMDs in the region could be
explained ahead using the SOI of January to April. This
opens the door for exploring seasonal annual maximal dis-
charge forecasting, a strong proxy for seasonal flood fore-
casting. This kind of relationship has been established be-
tween rainfall amount in the Sahel and the SST anomaly
in the Equatorial Atlantic upwelling, and the position of the
Saint-Helena high-pressure center (Mahe and Citeau, 1993).

https://doi.org/10.5194/piahs-384-219-2021 Proc. IAHS, 384, 219–224, 2021



222 J. Hounkpè et al.: Flood sensitivity to climate extremes

Figure 2. Correlation coefficient between the four monthly climate indexes and the logarithm of the annual maximal.

Table 1. Percentage of stations with the associated sensitivity level computed using the SOI/SLP (See Fig. 3).

Sensitivity (%) <−50 −50 : −10 −10 : 0 0 : 10 10 : 50 > 50 Total

JFMA 0 0 0 21.4 39.3 0 60.7
FMAM 0 1.8 0 14.3 48.2 1.8 66.1
MAMJ 0 1.8 0 17.9 62.5 1.8 83.9
AMJJ 0 1.8 0 26.8 48.2 1.8 78.6

Figure 3. Percentage change of annual maximal discharge per unit
change SOI/SLP for stations with significant correlation at 10 %.

Strong connections between precipitations in West Africa
and the oceanic zones of the Atlantic frontage of Africa lo-
cated on the course of the African monsoon were found by
(Hamatan et al., 2004) and this relationship helps improve
substantially the scores of the seasonal rainfall forecast in
the region. However, estimating the discharge based on the
climate indexes through a direct relationship is beyond the
scope of this work.

4 Conclusions

This study evaluated the relationship between the annual
maximal discharge (AMD) and four climate indexes using
statistical methods. The results indicated a strong relation-
ship between AMD and the climate indexes. The Sea Level
Pressure (SLP) of the Southern Oscillation indexes (SOI) is
the most correlated and statistically significant (10 % level)
with flood discharges in the region irrespective of the pe-
riod considered. Most of the sensitivity indexes meaning the
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change in AMD per unit change in climate indexes are within
10 % and 50 % confirming the strong relationship previously
found. The established strong relation between climate in-
dexes and AMD could serve as a basis for exploring the sea-
sonal annual maximal discharge forecasting, a strong proxy
for seasonal flood forecasting. A promising research path
would be to use the potential predictability of climate indexes
such as SOI to provide probabilistic estimates of flood hazard
with lead times up to several months (Ward et al., 2014a, b).
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