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Abstract. This paper analyses a 42 year time series of daily precipitation in Ichkeul Lake Basin (northern
Tunisia) in order to predict extreme dry-spell risk. Dry events are considered as a sequence of dry days separated
by rainfall events from each other. Thus the rainy season is defined as a series of rainfall and subsequent dry
events. Rainfall events are defined as the uninterrupted sequence of rainy days, when at last on one day more than
a threshold amount of rainfall has been observed. A comparison of observed and estimated maximum dry events
(42 year return period) showed that Gumbel distribution fitted to annual maximum series gives better results
than the exponential (E) distribution combined with partial duration series (PDS). Indeed, the classical Gumbel
approach slightly underestimated the empirical duration of dry events. The AMS–G approach was successfully
applied in the study of extreme hydro-climatic variable values. The results reported here could be applied in
estimating climatic drought risks in other geographical areas.

1 Introduction

A proper simulation of precipitation is important. Precipita-
tion is a very important element of climate that affects both
the natural environment and human society. Events ranging
from prolonged droughts to short-term, high intensity floods
are often associated with devastating impacts both to society
and the environment (Hui et al., 2005). An alternative to the
Markov chain process which is typically used to simulate the
occurrence of precipitation is to use a wet-dry spell model
or alternating renewal model, that is, to simulate wet and dry
spells separately by fitting their durations to an appropriate
probability distribution. Among the study using the wet-dry
spell approach one can cite, for example, Bogardi and Duck-
stein (1993); Wilks (1999); Mathlouthi (2009); Mathlouthi
and Lebdi (2008, 2009, 2017); Dunxian et al. (2015); Konjit
et al., 2016.

It is well known that dry spells cause major economic and
human losses, and numerous studies have highlighted the
need for drought prevention and mitigation plans (Vicente-

Serrano and Beguería, 2003). The spatial and temporal as-
sessment of dry spells is necessary in order to protect agri-
culture, water resources and other socio economic concerns,
and areas at risk from droughts of long duration and great in-
tensity need to be determined. Sivakumar (1992) point up the
importance of admitting partial patterns of extreme drought,
which can then be used in the management of cultivated areas
(crop selection, irrigation planning, etc.) and water resources
management.

The analysis of extremes in dry-spell series has been ex-
amined classically using annual maximum series (AMS) ad-
justed to a Gumbel distribution (Gupta and Duckstein, 1975;
Lana and Burgueño, 1998). The AMS are constructed by de-
termining the maximum dry spell for each year, so the series
length equals the number of years for which records are avail-
able. However, the main drawback is the loss of the second,
third, etc. largest annual dry spells, which might exceed the
maximum dry spells of other years. An option approach is
the partial duration series (PDS), which is constructed using
the values above a selected threshold regardless of the year
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in which they occurred (Hershfield, 1973; Vicente-Serrano
and Beguería, 2003). Typically, the generalized Pareto (GP)
distribution has been used to model PDS (Bobée and Ras-
mussen, 1995). Although the PDS approach has obvious ad-
vantages over the AMS approach (Cunnane, 1973), it has
been used only infrequently in precipitation dry-spell anal-
ysis (Vicente-Serrano and Beguería, 2003).

In virtue, this paper is focused on the modelling of rainfall
occurrences under Mediterranean climate by wet-dry spell
approach. The intended objective is to determine whether
the use of AMS with the Gumbel distribution (AMS–G ap-
proach) is suitable for modelling extreme dry-spell risk; to
analyse if PDS with a probability distribution, that best fits
the data set, is adequate for modelling extreme dry-spell risk
and finally to compare both approaches with the observed
maximum dry spells to determine the most suitable estima-
tion of drought risk.

The study area is the Ichkeul basin (Northern Tunisia) with
several dams for irrigation, drinking water and water transfer
to other regions of the country. The precipitation irregular-
ity and the frequent dry spells are major restrictive factors
in crop growth and water demand satisfaction imposed on
dams. For this reason, this area is particularly suitable for
examining this approach.

2 Data

Daily precipitation records at rain gauges in the basin of
Ichkeul Lake located in Northern Tunisia were used in this
analysis (Fig. 1). The total area of this region calculated by
GIS is 2120 km2. The rainy season starting at September and
lasting until the beginning of May. The mean of annual rain-
fall is 600 mm; the coefficient of variation is 0.25. The cli-
mate of this area is classified as sub-humid; the average an-
nual rainfall is below 40 % of the total annual potential evap-
oration. Except in occasional wet years, most precipitation
is confined to the winter months in this basin. The dry sea-
son lasts from May to August. Daily values of precipitation
are quite variable. There is also considerable variation from
year to year. Ten time series of daily precipitation exist for
the period from 1968 to 2010.

3 Method

3.1 Extract series of dry and rainfall events

In the wet-dry spell approach, the time-axis is split up into
intervals called wet periods and dry periods. A rainfall event
is an uninterrupted sequence of wets periods. The definition
of event is associated with a rainfall threshold value which
defines wet (Fig. 2). As this limit 3.6 mm d−1 has been se-
lected. This amount of water corresponds to the expected
daily evapotranspiration rate, marking the lowest physical
limit for considering rainfall that may produce utilizable sur-
face water resources. In this approach, the process of rainfall

occurrences is specified by the probability laws of the length
of the wet periods, and the length of the dry periods (time
between storms or inter-event time).

The rainfall event r in a given rainy season n will be char-
acterized by its duration Dn,r , the temporal position within
the rainy season, the dry event or inter-event time Zn,r and
by the cumulative rainfall amounts ofHn,r ofDn,r rainy days
(Fig. 2).

r = f (Dn,r ,Hn,r ,Zn,r ) (1)

Where f is the function defined on R∗+, which to each event
r associates a value D, H and Z themselves, real discrete
random variables.

Zn,r = xn,r − xn,r−1 (2)

Hn,r =

Dn,r∑
k=1

hk (3)

Where hk represents the total daily rainfall in mm. Let hk > 0
and at least a value of hk > 3.6 mm.

The varying duration of the events requires that the cumu-
lative rainfall amounts corresponding to each event should
be conditioned by the duration of the event. The identifi-
cation and fitting of conditional probability distributions to
rainfall amounts may be problem especially in the case of
short records and for events with extreme (long) durations
(Foufoula-Georgiou and Georgakakos, 1991). The number
of rainfall events per rainy season n is Nn and the length Ln
of this last, of random duration, is defined as the time span
between the start of the first and the end of the last rainfall
event.

Ln =

Nn∑
r=1

Dn,r +

Nn−1∑
r=1

Zn,r (4)

The length of the climatic cycle Cn is determined as the time
lapsed between the onsets of two subsequent rainy seasons.

Cn = xn+1,r1− xn,r1 (5)

3.2 Extreme dry event modelling with annual maximum
series and Gumbel distribution

The distribution introduced by Gumbel is very useful for
extreme dry event frequency modelling using the AMS–
G approach (Gumbel, 1958; Vicente-Serrano and Beguería-
Portugués, 2003). The Gumbel distribution is a two-
parameter distribution with constant skewness. It is a par-
ticular case of the three-parameter generalized extreme value
(GEV) distribution, i.e. the limit distribution for maxima se-
ries. The Gumbel is usually preferred to the GEV because of
its ease of calculation. Its probability density function is

f (x)=
1
∝
e{−[(x−β)/α]}−e

{−[(x−β)/α]}
(6)
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Figure 1. Study area.

Figure 2. Event representation of the climatic cycle.

and its cumulative distribution function is expressed by

F (x)= e−e
−

[
x−β
α

]
(7)

where x is the value of the variable, and α and β are scale
and location parameters of the distribution, respectively. The
mean and the variance are µ= β + 0.5772α and σ 2

=
π2α2

6 ,
accordingly.

The prospective maximum dry event for a T year period
XT can be calculated using

XT = β −α ln
{
− ln

[
1− (1/T )

]}
(8)

3.3 Estimation of extreme dry event using PDS

3.3.1 Characteristics of PDS

Although the preceding method has been widely used in the
study of extreme dry spells, in the analysis of other hydro-
logical and climatic variables (e.g. extreme rainfall, floods)
many studies prefer to use PDS or series of peaks over an
upper limit. Given the dry spell series a = {a1,a2, . . .,an},
for the station a, where ai is the duration of a given dry spell,
the PDS b = {b1,b2, . . .,bj } consists of all the values of the
original series that exceed a predetermined upper limit a0:

bj = ai − a0 ∀ ai > a0 (9)

The size of the series obtained depends, therefore, on the up-
per limit a0. For this reason, PDS use the information con-
tained in the original sample more efficiently, and permit the
inclusion of more than one event per year, if they satisfy the
conditions established in defining an extreme event (Chow et
al., 1988; Vicente-Serrano and Beguería-Portugués, 2003).
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3.3.2 Probability distributions used to adjust PDS

Many probability distributions have been adjusted to
PDS hydrological series, including lognormal, Pearson III,
Gamma, GEV, Weibull, etc. (Bobée et al., 1993; Vicente-
Serrano and Beguería-Portugués, 2003). In this study, we
evaluated the continuous probability distributions given by
Hyfran software, and we found that the Exponential law is
the best fitting probability distribution to PDS. The param-
eter estimates is performed by the method of moments. A
Chi-Squared goodness-of-fit Test is used to determine how
well the theoretical distribution fits the empirical distribution
obtained from the sample data. The exponential (E) distribu-
tion function is

f (t)= b · e−b(t−m) m< t <+∞ (10)

where b parameter of the exponential distribution, can be es-
timated as the reciprocal mean t of the sample of times ob-
served:

b =
1
t

(11)

and its cumulative distribution function is expressed by

G(t)= 1− e−b(t−m) m< t <+∞ (12)

The event XT in a period of T years is obtained using

XT =m−
1
b

ln
(

1−
1
T

)
(13)

A major problem in using PDS is the selection of the lower
bound a0. This value should be low enough to ensure the
inclusion of as much relevant information as possible, with-
out violating the assumption of independence of the peaks.
Various methods have been proposed to determine the most
appropriate lower bound (Ashkar and Rouselle, 1987; Mad-
sen et al., 1997). However, according to Vicente-Serrano and
Beguería-Portugués (2003) Beguería (2003) has shown that
the parameters and quantile estimations vary randomly with
the threshold value, and no single value is entirely adequate.
For this reason, in this paper, the maximum dry event in the
42 year period was calculated using different lower bounds
in the PDS–E approach. These bounds were defined using
the percentiles of the dry event series every 0.5 from per-
centiles 90 to 99.5. Dry event were considered extreme above
the 90th percentile.

3.4 Comparison of the AMS–G and PDS–E approaches

The maximum dry event observed in each series in the period
1968–2010 was extracted. These were compared with the 42
year estimates using the AMS–G and PDS–E approaches. It
is clear that the maximum dry event observed in a 42 year
period does not necessarily correspond to a return period of
42 years. This limitation was partially overcome by using

several rain gauges in the same region. The goodness of fit
was tested by means of the root-mean-square error (RMSE)
(Willmott, 1982), the lowest value indicating the best estima-
tion:

RMSE=

√√√√1
n

n∑
i=1

(
zi − ẑi

)2 (14)

Where zi is the observed value and ẑi the estimated value
using annual maximum or partial duration series; n is the
number of rain gauges.

4 Results

4.1 Selection of the lower bound in using PDS

The main problem in using PDS involves the selection of
the lower bound. In theory, the method is invariant to the
variation in the lower bound. In practice, however, the re-
sults may vary greatly, especially with the sample sizes that
are common in hydro climatic studies. This is exemplified
in Fig. 3, in which the maximum dry spells expected in 42
years are shown for five rain gauges, in relation to the lower
bound used. Whereas this value was expected to be similar
independently of the lower bound chosen, it showed great
random variation, being as 21 % compared to the average in
some cases. Here, we assumed that the average of the dif-
ferent values would provide a good estimate of the unknown
true value, this being less uncertain than using a unique, ar-
bitrary, threshold.

4.2 Comparison of maximum dry event estimations
using the AMS–G and PDS–E approaches with the
observed maximum dry event

Figures 4 and 5 compare AMS–G and PDS–E estimates with
the observed maximum dry events. The AMS–G method es-
timated adequately in the majority of cases the duration of
the observed maximum dry events. The underestimation did
not exceed 9 d, which prudent use of this method. The PDS–
E clearly overestimated the maximum dry events duration.
The difference between predicted and observed values varies
from −5.4 % to 25.7 %.

The RMSE between the observed and estimated values is
also highly indicative of the better performance of the AMS–
G distribution. There was a better adjustment for the dry
event series (RMSE= 4.7 versus 9.2).

Figure 6 shows the spatial distribution of the maximum dry
events observed in the study area between 1968 and 2010,
along with the estimations using the PDS–E and AMS–G
approaches. The longest dry events are located in the south-
ern areas, with values over 81 consecutive days of precip-
itation below 3.6 mm. A negative southwestern gradient of
the maximum dry event duration is established. The same
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Figure 3. Oscillation of the maximum dry event (days) estimations
as a function of the selected percentile in the creation of the dry
event PDS. Five representative rain gauges are shown.

Figure 4. Differences between maximum dry events observed and
estimated using AMS modelled using Gumbel distribution.

Figure 5. Differences between maximum dry events observed and
estimated using PDS modelled using the Exponential distribution.

pattern is revealed by both estimations. There were signifi-
cant contrasts between the south and west, with differences
about 40 d. The AMS–G map shows a much closer match to
the observed data. The Exponential estimation is clearly little
higher than the observed figure.

The absolute errors of the estimations are shown in Fig. 7.
The high magnitude of the errors resulting from the PDS–
E approach is evident. Here, the positive errors indicate the
underestimation provided by this approach. By contrast, the
errors of the AMS–G approach include low negative values
and the estimation is, in general, better.
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Figure 6. Maximum dry events: (a) observed in 42 years (1968–
2010); (b) predicted using the E distribution; (c) predicted using
Gumbel distribution.

5 Discussion and conclusions

In this paper, we have used a PDS sampling in conjunc-
tion with an Exponential distribution. The results obtained
have been compared with those obtained when adopting the

Figure 7. Differences between maximum dry spells observed
and estimated: (a) observed-estimated using Gumbel distribution;
(b) observed-estimated using E distribution.

AMS–G approach for the maximum dry event series ob-
served in the study area.

Different probability distributions can be used to fit both
AMS and PDS. The Gumbel distribution is a two parameter
extreme values distribution widely used in modelling AMS.
It has been compared with the one parameter Exponential
distribution fitted to PDS. It is a particular case of the gamma
distribution. It is the continuous analogue of the geometric
distribution. It is obvious that a two parameter distribution
would fit the observed data better than a one parameter one.
Nevertheless, the need to estimate a greater number of pa-
rameters introduces an extra source of uncertainty that can
affect the final estimates. Here, we find that the use of AMS-
G is more efficient than PDS-E, contrary to what has been
reported in several other studies. In this sense Moreno and
Roldán (1999), Mkhandi et al. (2000) and Vicente-Serrano
and Beguería (2003) indicated that the use of PDS for the
stochastic modelling of extremes has yielded good results
in the analysis of hydrological variables, whereas numerous
studies have pointed out that AMS produces a significant
loss of data for extreme modelling (Cunnane, 1973; Madsen
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et al., 1997; Vicente-Serrano and Beguería, 2003). Accord-
ingly, the RMSE obtained by the AMS–G is lower than that
obtained by the PDS–E when analysing the empirical maxi-
mum dry events for a 42 year time series.

One shortcoming of the PDS method is the selection of
the upper limit used to define the PDS. We found that the
final quantile estimates vary significantly when only small
changes are made in the upper limit used. This result has
been reported previously by the study of Vicente-Serrano and
Beguería, 2003. To cope with this problem, as proposed by
Vicente-Serrano and Beguería, (2003), the use of different
upper limits when constructing a set of PDS, and then taking
the average quantile estimates obtained with them. A set of
PDS with limits ranging from percentiles 90 to 99.5, rising
by 0.5 steps, was used in this paper. This proved to stabi-
lize the variability of the quantile estimates. However, if this
methodology is used on a more general scale, the upper limit
range should be defined more precisely because it may differ
for each set of data.

This paper has revealed that the widely used AMS–G ap-
proach estimates adequately the observed extreme dry-spell
risk in the study area, by contrast with the PDS-E.

The results obtained here are of potential importance for
agrarian planning. The method used is of potential impor-
tance for agrarian planning and of benefit in crop manage-
ment. It facilitates the drawing of risk maps and the drafting
of preventive and palliative plans for the mitigation of the
effects of drought.

Data availability. The data are printed in paper documents stored
(archived) in office of the General Directorate of Water Resources
and the Division of Dam Operation of Extreme North and Ichkeul
of the Ministry of Agriculture of Tunisia, 2019a, b (http://www.
agriculture.tn/). These data are the property of this organization, and
are available in situ.

Author contributions. Discussed the results and contributed to
the final version of the manuscript: FL; Developed and performed
the design and implementation of the research, the computations,
the analysis of the data and the results and the writing of the
manuscript: MM.

Competing interests. The authors declare that they have no con-
flict of interest.

Special issue statement. This article is part of the special issue
“Hydrological processes and water security in a changing world”.
It is a result of the 8th Global FRIEND-Water Conference: Hydro-
logical Processes and Water Security in a Changing World, Beijing,
China, 6–9 November 2018.

Acknowledgements. The authors acknowledge the help of Gen-
eral Directorate of Water Resources and Division of Dam Opera-
tion of Extreme North and Ichkeul of the Ministry of Agriculture of
Tunisia. The authors thank the reviewers for their relevant remarks
that contributed to the improvement of this article.

References

Ashkar, F. and Rouselle, J.: Partial duration series modeling under
the assumption of a Poissonian flood count, J. Hydrol., 90, 135–
144, 1987.

Beguería, S.: Identificación y características de las fuentes de sedi-
mento en áreas de montaña: erosión y transferencia de sedimento
en la cuenca alta del río Aragón, PhD thesis (unpublished), Uni-
versity of Zaragoza, 2003.

Bogardi, J. J. and Duckstein, L.: Evénements de période sèche en
pays semi-aride, Revue des Sciences de l’Eau, 6, 23–44, 1993.

Bobée, B., Cavadias, G., Ashkar, F., Bernier, J., and Rasmussen, P.:
Towards asystematic approach to comparing distributions used
in flood frequency analysis, J. Hydrol., 142, 121–136, 1993.

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrol-
ogy, McGraw-Hill, New York, NY, 572 pp., 1988.

Cunnane, C.: A particular comparison of annual maxima and partial
duration series methods of flood frequency prediction, J. Hydrol.,
18, 257–271, 1973.

Dunxian, S., Ashok, K. M., Jun, X., Liping, Z., and Xiang, Z.: Wet
and dry spell analysis using copulas, Int. J. Clim., 36, 476–491,
https://doi.org/10.1002/joc.4369, 2015.

Foufoula-Georgiou, E. and Georgakakos, K. P.: Hydrologic ad-
vances in space-time precipitation modeling and forecasting, in:
Recent advances in the modeling of hydrologic systems, edited
by: Bowles, D. S. and O’Connell, P. E., NATO ASI Series, Serie
C: mathematical and physical sciences, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 345, 47–65, 1991.

Gumbel, E. J.: Statistics of Extremes, Columbia University Press,
1958.

Gupta, V. K. and Duckstein, L.: A stochastic analysis of extreme
droughts, Water Resour. Res., 11, 221–228, 1975.

Hershfield, D. M.: On the probability of extreme rainfall events, B.
Am. Meteorol. Soc., 54, 1013–1018, 1973.

Hui, W., Xuebin, Z., and Elaine, M. B.: Stochastic modelling
of daily precipitation for Canada, Atmos. Ocean, 43, 23–32,
https://doi.org/10.3137/ao.430102, 2005.

Konjit, S., Fitsume, Y., Asfaw, K., and Shoeb, Q.: Wet and dry spell
analysis for decision making in agricultural water management
in the eastern part of Ethiopia, West Haraghe, Int. J. Water Res.
Environ., 8, 92–96, https://doi.org/10.5897/IJWREE2016.0650,
2016.

Lana, X. and Burgueño, A.: Spatial and temporal characterisation of
annual extreme droughts in Catalonia (NE Spain), Int. J. Clim.,
18, 93–110, 1998.

Madsen, H., Pearson, C. P., and Rosbjerg, D.: Comparison of an-
nual maximum series and partial duration methods for modelling
extreme hydrologic events, 1. At-site modelling, Water Resour.
Res., 33, 759–769, 1997.

Mathlouthi, M.: Optimisation des règles de gestion des barrages
réservoirs pour des évènements extrêmes de sècheresse, Thèse
de Doctorat, Institut National Agronomique de Tunisie, Tunis,
Tunisie, 162 pp., 2009.

https://doi.org/10.5194/piahs-383-241-2020 Proc. IAHS, 383, 241–248, 2020

http://www.agriculture.tn/
http://www.agriculture.tn/
https://doi.org/10.1002/joc.4369
https://doi.org/10.3137/ao.430102
https://doi.org/10.5897/IJWREE2016.0650


248 M. Mathlouthi and F. Lebdi: Estimating extreme dry spell risk

Mathlouthi, M. and Lebdi, F.: Event in the case of a single reservoir:
the Ghèzala dam in Northern Tunisia, Stochastic Environ. Res.
Risk Assess., 22, 513–528, https://doi.org/10.1007/s00477-007-
0169-3, 2008.

Mathlouthi, M. and Lebdi, F.: Analyse statistique des séquences
sèches dans un bassin du nord de la Tunisie, Hydrol. Sci. J., 54,
442–455, https://doi.org/10.1623/hysj.54.3.442, 2009.

Mathlouthi, M. and Lebdi, F.: Frequency and severity of dry spell
phenomenon in Ghezala Dam reservoir (Tunisia), European Wa-
ter, 60, 255–261, 2017.

Ministry of Agriculture of Tunisia: General Directorate of Wa-
ter Resources, available at: http://www.agriculture.tn/, Daily rain
gauge observations, 2019a.

Ministry of Agriculture of Tunisia: General Directorate of Dams
and Major Hydraulic Works, available at: http://www.agriculture.
tn/, Division of Dam Operation of Extreme North and Ichkeul,
Hydraulic database of the Ghézala dam, 2019b.

Mkhandi, S. H., Kachroo, R. K., and Gunasekara, T. A. G.: Flood
frequency analysis of southern Africa: II. Identification of re-
gional distributions, Hydrol. Sci. J., 45, 449–464, 2000.

Moreno, F. and Roldán, J.: Regional daily precipitation stochas-
tic model parameters. Application to the Guadalquivir valley in
southern Spain, Phys. Chem. Earth Pt. B, 24, 35–47, 1999.

Sivakumar, M. V. K.: Empirical analysis of dry spells for agricul-
tural applications in West Africa, J. Climate, 5, 532–539, 1992.

Vicente-Serrano, S. M. and Beguería Portugues, S.: Estimating
extreme dry-spell risk in the middle Ebro Valley (Northeast-
ern Spain): a comparative analysis of partial duration series
with a General Pareto distribution and annual maxima se-
ries with a Gumbel distribution, Int. J. Clim., 23, 1103–1118,
https://doi.org/10.1002/joc.934, 2003.

Wilks, D. S.: Interannual variability and extreme value characteris-
tics of several stochastic daily precipitation modes, Agric. Mete-
orol., 93, 153–169, 1999.

Willmott, C. J.: Some comments on the evaluation of model perfor-
mance, B. Am. Meteorol. Soc., 63, 1309–1313, 1982.

Proc. IAHS, 383, 241–248, 2020 https://doi.org/10.5194/piahs-383-241-2020

https://doi.org/10.1007/s00477-007-0169-3
https://doi.org/10.1007/s00477-007-0169-3
https://doi.org/10.1623/hysj.54.3.442
http://www.agriculture.tn/
http://www.agriculture.tn/
http://www.agriculture.tn/
https://doi.org/10.1002/joc.934

	Abstract
	Introduction
	Data
	Method
	Extract series of dry and rainfall events
	Extreme dry event modelling with annual maximum series and Gumbel distribution
	Estimation of extreme dry event using PDS
	Characteristics of PDS
	Probability distributions used to adjust PDS

	Comparison of the AMS–G and PDS–E approaches

	Results
	Selection of the lower bound in using PDS
	Comparison of maximum dry event estimations using the AMS–G and PDS–E approaches with the observed maximum dry event

	Discussion and conclusions
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

