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Abstract. A good performance of hydrological model for flood simulation is of critical importance for flood
forecasting. Taking Yandu River catchment, as the study area, three hydrological models (i.e. Xin’anjiang model,
TOPMODEL, artificial neural network model) and a multi-model ensemble simulation method (i.e. entropy-
based method) were applied to simulate the hydrological processes of 30 flood events occurring in 1981–1987.
The performance of the ensemble members and multi-model ensemble simulation method was evaluated by
comparing indicators of Nash-Efficiency coefficient, errors in root mean square, peak occurrence time, and rela-
tive errors of flood peak discharge, event runoff depth. Results show that the three hydrological models perform
well for hydrological simulation of all 30 storm floods with Nash and Sutcliffe Efficiency coefficient of above
0.75 and relative error of less than 10 %. However, different model exhibits a difference in simulation errors
of peak discharge and peak occurrence time. For example, BP model has the smallest error of 3.78 % for peak
discharge simulation while that of Xin’anjiang model and TOPMODEL are 20.9 % and 24.7 % respectively. The
entropy-based ensemble simulation method improved flood simulation accuracy to some extent for all evaluation
criteria comparing to the three hydrological models. It is feasible to apply entropy-based ensemble approach for
improving accuracy of flood forecasting in humid regions of China.

1 Introduction

In the context of global warming, the probability and inten-
sity of extreme precipitation are increasing (IPCC, 2014),
which further aggravates the risk of flood disasters. It is
therefore critical to improve flood forecasting technologies
(Pitt, 2007). Hydrological modeling has been one of the com-
monly used tools of flood forecasting (Werner, 2005; Song
and Kong, 2010). Tens of hydrological models with differ-
ent structures have been successfully developed and applied
globally during the past decades. Bao (2009) considered
the 1950s as an important time node to divide hydrological

model development into two stages: experience-based stage
and model study stage. At the former stage, statistical meth-
ods are used to analyze long-term observation records to re-
veal the relationships between hydrological elements and the
change regular, such as unit hydrograph method (Lin, 2003),
corresponding stage/discharge method (Rui, 2004) and so on.
The latter one produces with the development of theoretical
technologies including computer technology, 3S technology,
and geographic information systems, such as Xin’anjiang
(XAJ), Shanbei model, Mixed Runoff yield model in China
(Zhao, 1984), SAC (Burnash, 1995) and SSARR models
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(Rockwood, 1968) in the US, Tank model (Sugawara, 1972)
in Japan, CLS model in Italy (Craft et al., 1996), etc.

At the same time, models are divided into different types
according to various criteria. Yang divides flood forecasting
technology into five genres: black box genre, concept genre,
residual genre, filtering genre and statistical genre (Yang,
1996). However, difference exists more or less among these
models, such as model structure, model type, parameters,
generalization methods and so on, causing simulation results
to perform variously (Vrugt et al., 2006). While it is possible
for one model to poorly simulate individual flood event, it is
rare for multiple models to all yield poor performance since
the deficiency of certain model may be made up by other
models (Roulin, 2007). This idea fits well with the concept
of multi-model ensemble. This concept was first proposed
in the economic and meteorological fields in the 1960s. It
refers to the use of multiple means or methods to obtain the
forecast value of certain factor, and then the various forecast
values are used to calculate the optimal forecasting scheme.
Bates and Granger (1969), Epstein (1969) and Leith (1974),
respectively, are considered to be the first to propose ensem-
ble ideas in the economic and meteorological fields. Since
then, some scholars have specialized in ensemble forecast-
ing of meteorology. For example, Andrew et al. proposed a
Bayesian ensemble method in several common circulation
models (GCM) for seasonal precipitation ensemble forecast-
ing in 2003 (Andrew, 2003). Takemasa and Masaru (2011)
developed the WRF-LETKF system to forecast precipita-
tion by combining a mesoscale numerical weather prediction
model (WRF) and a filtering algorithm (LETKF). Mudasser
et al. (2014) used 12 different weather models to simulate
precipitation in the rainy season in New Zealand and found
that the choice of ensemble method was more important than
the number of ensemble members to affect simulation accu-
racy.

In view of the successful application of ensemble meth-
ods in meteorology, hydrologists have tried to introduce this
method into flood forecasting (Balint et al., 2006). Cloke
and Pappenberger (2009) proposed that Ensemble Forecast-
ing System (EPS) in flood forecasting, which is based on
the Monte Carlo structure, consisted of control prediction
and disturbance prediction. Up till now, scholars have ap-
plied different ensemble methods to further improve the
flood forecasting scheme. For example, Jasper et al. (2002)
forecasted the inflow of Lake Maggiore using five mod-
els ensemble. Davolio (2008) forecasted floods in northern
Italy by using six different rainfall-runoff models. Diks and
Vrugt (2010) and Arsenault et al. (2005) used a variety of
ensemble methods to simulate runoff processes in different
catchments in the United States, and both found that the
Granger-Ramanathan ensemble method had the highest ac-
curacy. Arsenault et al. (2017) improved the traditional en-
semble method and proposed a new idea combining multi-
inputs and multi-model ensemble. They used 12 ensemble
members combined with three hydrological models and four

climate data, to simulate the runoff process in 424 catch-
ments in the United States. The results show that 70 % of the
catchments have greatly improved the forecasting accuracy
through the ensemble method.

Flood forecasting scheme is different for different climate
zone due to different hydrological characteristics (Hamill et
al., 2004; Guan et al., 2018). Yangtze River is the first largest
river in China in terms of its drainage area and river length.
Effective flood forecasting is of critical importance for flood
control of this river basin. However, there are rare studies
of flood forecasting by using ensemble method of multiple
models, particularly for tributaries of the Yangtze River. In
this paper, taking Yandu River catchment, a tributary of up-
per Yangtze River, as a study case, three hydrological mod-
els (e.g. Xin’anjiang model, TOPMODEL, artificial neural
network model) were used to simulate flood events in 1981–
1987. Then the entropy-based method is used to ensemble
multiple models so as to improve the forecasting scheme and
the accuracy of flood forecasting, which can provide prelim-
inary data support for the further promotion of hydrological
models ensemble application research. The remainder of this
paper is organized as follows: Sect. 2 contains a brief de-
scription of the study area, three hydrological models, the
ensemble method and the evaluation criteria. The results of
individual model and multi-model ensemble are described in
Sects. 3 and 4 gives conclusions of the study.

2 Data and methods

2.1 Study area

The Yandu River catchment is located in Badong County,
Hubei Province, China, in the upper tributary of the Yangtze
River, with a catchment area of 601 km2. The terrain in the
catchment is mostly mountainous and covered with dense
vegetation of forest and grass. The catchment situates in typ-
ical monsoon climate zone with mean annual temperature of
11.5 ◦C, and mean annual precipitation of about 1650 mm.
The flood season mostly starts from May and ends in Septem-
ber. There are five rain stations in the catchment. The out-
let hydrometric station of Yandu station was established in
1958. The river system and locations of rain gauges and hy-
drometric station are shown in Fig. 1. Thirty flood events in
1981–1987 were used to evaluate performance of hydrolog-
ical model for flood simulation. Rainfall and discharge data
with temporal resolution of 1 h were collected from Hydro-
logical Yearbook published by Hydrology Bureau (Ministry
of Water Resources of China, 1981–1987).

2.2 Hydrological models

2.2.1 XAJ model

Xin’anjiang model (XAJ) is a conceptual rainfall-runoff
model developed by HoHai University (Zhao, 1984). The
XAJ model is based on mechanism of saturation excess.
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Figure 1. River networks and observational station distribution.

Figure 2. Framework of the Xin’anjiang Model. Note: K: Reduc-
tion coefficient of evaporation; IMP: Impervious area proportion;
B: Exponent of storage capacity curve; WM: Average water stor-
age capacity in the catchment; WUM: Storage capacity of the upper
layer; WLM: Storage capacity of the lower layer; C: Evapotran-
spiration coefficient of deeper layer; SM: Storage capacity of free
water; EX: Exponent of free water storage capacity curve; KG: Out-
flow coefficient of free water storage to groundwater; KI: Outflow
coefficient of free water storage to interflow; CG: Regression co-
efficient of groundwater storage; CS: Regression coefficient of sur-
face runoff; CI: Regression coefficient of interflow storage; L: Co-
efficient of hysteresis calculation; XE: Muskingum parameter; KE:
Muskingum parameter.

The model is mainly composed of four parts, namely runoff
yield, evapotranspiration, water source partition and conflu-
ence. For flood simulation, hourly rainfall series are needed
to drive XAJ model. The model structure and parameters are
shown in Fig. 2.

2.2.2 TOPMODEL

TOPMODEL is a semi-distributed watershed hydrological
model proposed by Beven and Kirkby (Xu, 2009). The model
is based on the concept of variable flow generation with
consideration of catchment topographical features, soil tex-
ture, etc. The model divides soil layer into three aquifer
zones, vegetation root zone, unsaturated soil zone, and satu-

Figure 3. Conceptual framework of TOPMODEL.

Figure 4. BP model flowchart. Note: P1(t), P 2(t), P 3(t), P4(t),
P5(t): five precipitation station data; Q(t − 1), Q(t − 2), Q(t − 3):
discharge data for the first three moments; N1–N17: the interme-
diate layer nodes; Q(t): discharge at the corresponding time of the
basin outlet.

rated soil zone. The inputs of TOPMODEL not only include
rainfall series, but also include catchment topographic index
ln(α/ tanβ). Digital Elevation Model (DEM) data is there-
fore needed for the model application. Total runoff is the sum
of interflow and saturated slope flow. The conceptual frame-
work of the TOPMODEL is shown in Fig. 3. There are five
parameters in TOPMODEL need to calibrate.

2.2.3 BP model

The BP model is a multi-layered feedforward neural network
with a strong self-learning ability. It can transmit corrected
errors in reverse order (Zhao, 1996). Its hierarchy includes
the input layer, the hidden layer, and the output layer. This
paper uses a three-layer BP model with only one hidden
layer. The structure of the constructed BP model is 8-17-1,
shown in Fig. 4. It means BP model has 8 inputs, including
data from 5 precipitation station data and discharge data for
the first three moments. The only output of the model is the
discharge at the corresponding time of the basin outlet. The
intermediate layer is connected to the input and output and is
calculated as 17 layers by the empirical formula, represent-
ing the complexity of the established model.
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2.3 Entropy-based ensemble method

In ensemble methods, it is important to identify the weight
coefficients. The basic idea of the entropy method is that the
variation of the error between the simulated and observed
results is inversely proportional to the weight coefficient.

Firstly, calculate the errors between the simulated and ob-
served results and normalize the errors:

Eit =

{
1, |at−ait |

at
≥ 1

|at−ait |
at

,0≤ |at−ait |
at
≤ 1

(1)

Bit =
Eit
m∑
t=1
Eit

, t = 1,2, . . .m (2)

Secondly, calculate the entropy value of the relative error
in the model simulation:

Hi =−

m∑
t=1

Bit lnBit
lnm

,i = 1,2, . . .n (3)

Thirdly, calculate the variation index and weight coeffi-
cient:

Di = 1−Hi, t = 1,2, . . .n (4)

Qi =

1− Di∑n
i=1Di

m− 1
, i = 1,2, . . .n (5)

Assume at , t = 1, 2, 3, . . . , m is the sequence of simula-
tion objects and there are n kinds of single models to sim-
ulate, then the simulation value of the method i at time t is
ait , i = 1, 2, . . . , n. Where Eit and Bit represent the relative
errors and normalized errors of the method i at the time t , at
represent the observed value at time t , whileHi ,Di ,Qi mean
the entropy value, variation index and weight coefficient of
model i.

2.4 Evaluation criteria

Five evaluation criteria of Nash and Sutcliffe efficiency coef-
ficient (so called Nash-Efficiency Coefficient, NEC), errors
in root mean square (RSME), error in time to flood peak
(ETFP), relative error in flood peak discharge (REFPD) and
relative error in event runoff depth (REERD), were selected
to evaluate performance of hydrological model for flood sim-
ulation. Details about the five evaluation criteria could be
found in manual guideline of flood forecasting issued by
the Ministry of Water Resources of the People’s Republic of
China (2008). Good performance of hydrological model for
flood simulation will have NEC approaching to 1 and RSME,
ETFP, REFPD, and REERD being close to 0.

Figure 5. Event runoff depth against precipitation of 30 floods.

3 Results and discussion

3.1 Flood characteristics

Being influenced by Asian monsoon climate, floods in the
Yandu River mostly occur in period from May to Septem-
ber with 2–19 d duration. Statistical results of the selected
30 floods indicated that flood peak discharge ranges from
300 to 1200 m3 s−1 while the corresponding event rainfall
varies in range of 35.7–331.7 mm. The hydrograph of flood
is highly influenced by the spatiotemporal distribution pat-
tern of rainfall. 56.7 % of flood events have multiple peaks.
Flood runoff depth against rainfall in 30 flood events were
plotted in Fig. 5.

According to the trend line of the precipitation-runoff (P -
R) point group of 30 floods, the slope is 0.95, which is very
close to the 1 : 1 line and is below the 1 : 1 line. The slope
represents the runoff coefficient here and its value is close
to 1, indicating that the loss of the event flood is relatively
small overall. This indicates that the study area is humid and
antecedent soil moisture is abundant. The P -R relationship
of about 7 floods falls above the 1 : 1 line. The runoff coef-
ficient of seven floods is more than 1 due to the influence
by previous rainfall. Previous runoff had not completely re-
gressed before the next flood occurred, causing higher runoff
than rainfall.

3.2 Model calibration and flood simulation

Three individual models were used to simulate hourly flow.
Experience method and manual-trail-error method were used
for parameter calibration in the XAJ model, and the results
were shown in Table 1. As for the TOPMODEL, topographic
index of Yandu River catchment was calculated with Ar-
cGIS (Fig. 6) and then used as model inputs. Its parame-
ters were calibrated by manual-trial-error method (Table 2).
In BP model, automatic calibration method (Levenberg-
Marquardt method, Levenberg, 1944; Marquardt, 1963) was
used for model parameter calibration, where 153 weights and
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Table 1. The results of parameters calibration in XAJ hourly model.

Parameters K WM WUM WLM B C SM EX
Results 0.45 120.0 20.0 60.0 0.3 0.15 43 1.5

Parameters KI KG CS CI CG Ke Xe L

Results 0.3 0.4 0.58 0.89 0.982 1.0 0.28 0

Note: K: Reduction coefficient of evaporation; IMP: Impervious area proportion; B: Exponent of
storage capacity curve; WM: Average water storage capacity in the catchment; WUM: Storage capacity
of the upper layer; WLM: Storage capacity of the lower layer; C: Evapotranspiration coefficient of
deeper layer; SM: Storage capacity of free water; EX: Exponent of free water storage capacity curve;
KG: Outflow coefficient of free water storage to groundwater; KI: Outflow coefficient of free water
storage to interflow; CG: Regression coefficient of groundwater storage; CS: Regression coefficient of
surface runoff; CI: Regression coefficient of interflow storage; L: Coefficient of hysteresis calculation;
XE: Muskingum parameter; KE: Muskingum parameter.

Table 2. The calibrated parameters of TOPMODEL.

Parameters M ln(T0) SRmax SRinit ChVel

Results 0.013 5.7 0.06 0 408

Note: m: Rate parameter of soil infiltration intensity decreasing exponentially;
ln(T0): Natural logarithm of soil effective conductivity reaching saturation;
SRmax: Maximum water storage capacity in root zone; SRinit: Volume of initial
water shortage; ChVel: Effective surface convergence speed.

18 thresholds need to be determined. Due to the length of the
article, BP model parameters are not shown in this paper.

Evaluation statistics of the three models are shown in Ta-
ble 3. There are differences in the simulation results among
the three models. Combined with the multi-objective evalua-
tion results, the BP model based on the self-memory pattern
has the highest total qualified rate (90.0 %), but each model
shows a large difference under different evaluation condi-
tions. XAJ model has the highest peak occurrence time qual-
ified rate (93.3 %); BP model has the highest qualified rate
at the flood peak discharge (100 %); TOPMODEL has the
highest runoff depth qualified rate (90 %), the highest Nash-
Efficiency coefficient (0.840) and the lowest average RSME
(39.8).

3.3 Ensemble flood simulation with multiple models

The entropy method was used to calculate the weight coeffi-
cients of the three models. In simulating different flood, each
model is assigned with different weight coefficient as shown
in Table 4. For the 30 floods, the average weight coefficients
of the XAJ model, TOPMODEL and BP model are 0.347,
0.299, and 0.354, respectively. This indicates that the three
models contribute differently to the ensemble results. The or-
der of the three models is BP model, XAJ model, and TOP-
MODEL based on its weight from high to low. This indicates
that, to some extent, simulation results of the BP model are
better.

Figure 7 compared the hydrograph of the 820 716 flood
yielded by the three individual models and the ensemble. As
seen from the figure, the ensemble flood hydrograph is closer

to the observed flood hydrograph than all those yielded by
single models.

Figure 8 gives the scatterplots between observed and sim-
ulated flood discharge by three single models and the multi-
model ensemble. With R2 greater than 0.8, simulated dis-
charge by all three models has a good linear relationship
with observations. The trend lines of the XAJ model and BP
model are close to the 1 : 1 line, indicating their better dis-
charge simulation performance. The trend line of the TOP-
MODEL is above the 1 : 1 line, indicating its simulated val-
ues tend to be higher than observed values. Higher than all
three single models, the R2 value of the multi-model ensem-
ble reaches 0.935.

The average results of six indicators in the single model
and the multi-model ensemble were compared, as shown in
Table 5. It can be seen that compared with the single model,
the multi-model ensemble method effectively reduces vari-
ous errors and improves the Nash-Efficiency coefficient and
the qualified rate. Among them, the ensemble results are bet-
ter than the single model except the flood peak discharge and
peak occurrence time. Although the relative errors of flood
peak discharge is larger than that of BP model, relative to
XAJ model and TOPMODEL is significantly reduced. The
ensemble peak error is higher than TOPMODEL, but it is
lower than the XAJ model and the BP model. Only two items
are lower than the ensemble results, and the overall improve-
ment is more significant.

In order to more intuitively understand the distribution of
the improvement degree of the multi-model ensemble results
relative to the single model, the box line diagrams of the im-
provement degree in each evaluation objective function were
drawn, as shown in Fig. 9. As seen from Fig. 9a, the me-
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Figure 6. Topographic index calculation process.

Table 3. Comparison of results derived by single hydrological model for flood simulation.

Qualified rate XAJ TOPMODEL BP model

Runoff depth qualified rate (%) 90.0 90.0 90.0
Flood peak discharge qualified rate (%) 60.0 56.7 100.0
Peak occurrencetime qualified rate (%) 93.3 93.3 80.0
Total qualified rate (%) 81.1 80.0 90.0
Average Nash-Efficiency coefficient 0.785 0.840 0.753
Average RSME 42.1 39.8 48.9

Figure 7. Observed and simulated hydrographs of 820 716 flood in
the Yandu River Catchment.

dian, mean and interquartile range of the boxplots are sim-
ilar, indicating that the ensemble plays a similar role in re-
ducing the relative error of the event runoff depth for the
three models. For the peak discharge, the XAJ model and the
TOPMODEL box are basically in the positive range, while
the BP model box is in the negative range, indicating that
the ensemble has significant improvements for the first two

Figure 8. Comparison of the observed and simulated runoff of
models.
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Table 4. Weight coefficients assigned to the three models based on the entropy method.

Flood number 810 623 810 714 810 810 810 824 820 716 820 820 820 908 830 623 830 721 830 822

XAJ 0.265 0.507 0.249 0.353 0.477 0.100 0.542 0.100 0.482 0.401
TOPMODEL 0.580 0.100 0.346 0.181 0.100 0.657 0.100 0.742 0.100 0.252
BP 0.155 0.393 0.405 0.466 0.423 0.243 0.358 0.158 0.418 0.347

Flood number 830 906 830 922 831 004 831 017 840 612 840 703 840 723 840 909 850 424 850 603

XAJ 0.554 0.467 0.486 0.100 0.190 0.528 0.419 0.141 0.533 0.252
TOPMODEL 0.100 0.100 0.100 0.878 0.549 0.100 0.100 0.489 0.100 0.390
BP 0.346 0.433 0.414 0.022 0.261 0.372 0.481 0.370 0.367 0.358

Flood number 850 621 860 615 860 714 860 909 870 511 870 622 870 627 870 719 870 821 870 827

XAJ 0.267 0.340 0.311 0.367 0.440 0.570 0.499 0.232 0.241 0.009
TOPMODEL 0.482 0.233 0.457 0.100 0.137 0.120 0.002 0.354 0.373 0.638
BP 0.251 0.427 0.232 0.533 0.422 0.310 0.499 0.414 0.386 0.353

Table 5. Statistics of evaluation indexes.

Average Relative Relative errors Errors in Nash-Efficiency RSME Qualified
errors of of flood peak time to coefficient rate %−1

runoff depth %−1 discharge %−1 flood peak h−1

XAJ 9.31 20.94 2.1 0.785 42.09 85.9
TOPMDOEL 8.25 24.72 1.1 0.840 39.78 85.0
BP model 9.07 3.78 3.0 0.753 48.92 91.7
Ensemble 6.31 12.67 1.5 0.900 30.50 92.5

Note: (1) The bold font in the table indicates the item whose ensemble result reduces the accuracy of the single model result. (2) The error average
value in the table is the average value of the absolute value of the relative error of each field.

models (Fig. 9b). The ensemble has the greatest improve-
ment on TOPMODEL, with the box basically above the x-
axis. However, the peak discharge accuracy of the BP model
is decreased after multi-model ensemble. Moreover, for the
peak time (Fig. 9c), the error in time to flood peak of BP
is reduced the most, with an average decrease of 1 h. The
XAJ model has a single flood error reduced by 24 h, which
is the model with the largest error reduction. However, the
error in time to flood peak of the other floods generally in-
creased after multi-ensemble. As for Nash-Efficiency coeffi-
cient (Fig. 9d), the BP model has the greatest improvement,
and the Nash-Efficiency coefficient increases by an average
of 0.14. In conclusion, after the multi-model ensemble, the
models were improved to different degrees in the accuracy
except the individual models and several floods.

According to the improvement of the evaluation criteria
above results, the number of ensemble results was count in
this paper, as shown in Table 6. On the average, the multi-
model ensemble performed better than all three models in
simulating 43.4 % of the 30 flood events. It shows the most
improvement in terms of the Nash-Efficient coefficient and
RSME by yielding better results for more than 15 floods than
all three single models. In addition, the multi-model ensem-
ble givers better overall performance than two models for
34.68 % of the floods, and one model for 18.67 % of the

floods. The ensemble accuracy of the event runoff depth for
only one flood, the flood peak discharge for two floods, and
the peak occurrence time for one flood is lower than the sin-
gle model, accounting for a lower proportion. So it can be
considered that the accuracy results obtained by multi-model
ensemble are significantly improved compared to the single
model.

3.4 Discussion

XAJ model and TOPMODEL both perform well, the
manual-trial-error method was used to calibrate the parame-
ters, which made the results of some floods relatively unsatis-
factory. Because it takes into account the influencing factors
such as basin topography and soil properties, TOPMODEL
performs slightly better than the XAJ model. Based on a self-
learning algorithm, the BP model is the best among the three
models in discharge simulation. However, it is essentially a
statistical model with little representation of physical mech-
anisms.

The purpose of ensemble method is to determine the
weight and methods are various. Entropy-based ensemble
method in this paper has many advantages comparing to the
simple weighted average. The closer the simulated value and
measured value, the larger the weight. Each flood has a set
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Figure 9. Multi-model ensemble changes relative to single model.

Table 6. Multi-model ensemble improvement.

Percentage of flood event %−1 Better than 3 Better than 2 Better than 1 Worse than 3

Relative errors of runoff depth 36.67 36.67 23.33 3.33
Relative errors of flood peak discharge 20.00 36.70 33.30 10.00
Errors in time to flood peak 46.70 20.00 30.00 3.30
Nash-Efficiency coefficient 56.67 43.33 0.00 0.00
RSME 56.70 36.70 6.70 0.00
Average 43.35 34.68 18.67 3.33

of weights, which can get the best ensemble scheme in each
flood. In the future, more methods can be chosen for compar-
ative discussion.

The central idea of this paper is to carry out flood simu-
lation. This is the preliminary work of flood forecasting. For
forecasting, it may be considered to classify the floods ac-
cording to the characteristics of the floods, determine the set
of weight parameters for each type, and then carry out the
forecasting work, which needs further improvement and ver-
ification in the future.

4 Summary and conclusions

The XAJ model, TOPMODEL and BP model all perform
well in the simulation of floods in the Yandu River catch-
ment. Overall, the BP model has the highest forecast qual-
ified rate (90 %). The Nash-Efficiency coefficient, runoff
depth and peak time accuracy of the XAJ model and TOP-
MODEL are relatively high, while the flood peak discharge
accuracy of the BP model is relatively high. Taking into

account the overall simulation performance, the parameter
failed to take care of all flooding floods. So the simulation
accuracy of few floods is not ideal.

The entropy method was used to calculate the weight co-
efficients of the three models in the ensemble. Comparison
of five model evaluation statistics had shown that the multi-
model ensemble had improved flood simulation to various
degrees. On the average, the multi-model ensemble reduces
the relative errors of the runoff depth by 3.9 %, the relative er-
rors of the flood peak discharge by 1.5 %, the error in time to
flood peak by 0.4 h and the RSME by 10.9. At the same time,
it increases the average Nash-efficiency coefficient by 0.1.
Eighty percent of the flood ensemble results are better than
at least two single model results.

Data availability. Data is available based on request to the corre-
sponding authors.
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