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Abstract. Excessive withdrawal of groundwater in coastal and deltaic regions is one of the main reasons which
induce land subsidence in these areas. Land surface displacement monitoring with conventional methods is not
able to pinpoint subsurface compacting, which is very challenging. Instead of groups of extensometers, we apply
distributed fiber optic sensing (DFOS) with Brillouin scattering in vertical boreholes to identify the deformation
distribution along the entire borehole with meter-scale spatial resolution. We here present 10 boreholes with
depths range from 100 to 600 m with DFOS monitoring along the east coastal line of Jiangsu and Shanghai since
2015, and 1 borehole of 300 m in depth in Yangtze River delta since 2012. The results provide clear images on the
deformation distribution along entire boreholes, by identifying the main contributors to the subsidence and the
deformation evolutionary processes, with stable long-term monitoring performance. Hence, we demonstrate that
DFOS can open window into subsurface deformation and could be important complementary to conventional
methods to understand the land subsidence processes in coastal and deltaic regions.

1 Introduction

Land subsidence due to anthropogenic groundwater with-
drawal combined with a global sea level rise creates seri-
ous environmental problems in the coastal and deltaic re-
gions, including differential subsidence and infrastructure
damage, elevation decrease, increased vulnerability to flood-
ing and tsunami, and permanent inundation of lowland (Hig-
gins, 2016). In China, there have been 102 cities suffering
from land subsidence by 2015. Cities in coastal and deltaic
regions account a large proportion in those subsiding cities
due to large population and high demand in groundwater.
The pursuit of effective mitigation of subsidence, long term
urban planning and others have driven the demand of suf-
ficient observation of land subsidence. However, in general,
the complex aquifer systems in coastal and deltaic regions
may pose great challenges to identify the subsurface defor-
mations when the compacting is inhomogeneous.

Ground-based techniques (including leveling, extensome-
ters, GPS and T-LiDAR) and space-based techniques (in-
cluding InSAR and LiDAR) are currently the main tech-
niques used for land subsidence monitoring (Biirgmann et
al., 2000; Galloway and Burbey, 2011; Gonzdlez and Fer-
nandez, 2011). Most of these techniques obtain the surface
displacements while groups of borehole extensometers can
obtain subsurface deformation (Lofgren, 1969; Riley, 1986),
but only measures limited strata deformation due to the con-
struction and cost issues.

More recently, a novel method to monitor land subsidence
using distributed optical fiber sensing (DFOS) with Brillouin
scattering has been developed. DFOS enables the monitoring
of strain along the entire optical fiber with continuous spa-
tial measurements therefore the deformation along the opti-
cal fiber can be obtained. The feasibility of DFOS in vertical
boreholes for land subsidence monitoring has been illustrated
by Gu et al. (2018), Wu et al. (2015) and Zhang et al. (2018)
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Figure 1. (a) The idea of land subsidence monitoring using DFOS, d: thickness of a stratum; T1 & T2: time of data acquisition. (b) The
procedure of the cable installation (cable insert — cable prestretching — backfilling with standard materials — end fixing) (Modified from

Gu et al., 2020).
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Figure 2. The locations of land subsidence monitoring boreholes
using DFOS in Jiangsu and Shanghai.

and their results indicated that the ability of DFOS in ob-
taining continuous strata deformation offers a good option
in monitoring the deformations of soft soils in coastal and
deltaic regions.

In this paper, we introduce the monitoring of land sub-
sidence using DFOS in coastal and deltaic regions, includ-
ing the general idea and the key techniques. Additionally, the
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boreholes we set up in coastal and deltaic regions located in
Jiangsu and Shanghai were presented.

2 Land subsidence monitoring using DFOS

By installing slender sensing cables into a vertical borehole
(Fig.1a), the strata deformation along the entire borehole can
be obtained according to the frequency changes measured
by the cable. Among other DFOS techniques, Brillouin scat-
tering such as Brillouin Optical Time Domain Reflectome-
ter (BOTDR) is employed. The frequency shifts of Brillouin
scattering have linear correlations to the changes of longi-
tudinal strain and temperature (Bao and Chen, 2011). It is
notable that the negative strains of the sensing cable indicate
the compression of strata while the positive strains indicate
the rebound of strata. A typical spatial resolution and mea-
surement accuracy of BOTDR is 1 m and 50 e, respectively.

Figure 1b illustrated the procedure of the cable installa-
tion. According to the installation method, this novel method
only measures the vertical displacement. The fixed point on
the bedrock is immobile and the sensing cables should be
kept in tension and straight during the entire monitoring pe-
riod.

3 Key issues of the method
Generally, there are three key issues that should be carefully

consideration for the application of DFOS in the land sub-
sidence monitoring: (1) suitable sensing cables; (2) backfill
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Figure 3. The subsurface deformation obtained by DFOS. (a) Typical strain distribution along the borehole, (b) Subsurface deformations in

boreholes in the coastal region.

materials and (3) the coupling behavior between cables and
surrounding soils.

The complex subsurface conditions and the cable instal-
lation process require strong but sensitive sensing cables.
Therefore, two sensing cables namely metal-reinforced cable
(MRC) and fix-point cable (FPC) were developed. The struc-
tures of these two cables were introduced by Wu et al. (2015).
The backfill materials are very critical for the coupling of
sensing cable and surrounding soils, eventually for the valid-
ity of monitoring results. Undisturbed soils would be ideal
borehole backfill materials while it is impractical. The se-
lection of backfill materials concerns the complexity of the
backfilling (e.g. the use of clay may jam boreholes) and the
engineering properties of the backfill materials (e.g. the coef-
ficient of compressibility, etc.). We use a mixture of sand and
gravel, whose dgo, d30, and dq¢ is 0.74, 0.30 and 0.12 mm, re-
spectively, with the coefficient of uniformity (C,) of 6.33 and
the coefficient of curvature (C.) of 1.09. Such well-graded
backfill material can be smoothly backfilled without jam-
ming the borehole. The previous study indicated that the hor-
izontal confining pressure is the principle factor that affect
the coupling behavior of sensing cable and soils. The criti-
cal depth below which is considered to have strong coupling
is generally smaller than 40 m, depending on the type of the
soils. Since the boreholes for subsidence monitoring are usu-
ally deeper than 100 m, such critical depth should be accept-
able. Additionally, backfill materials are found to have in-
significant impact on the coupling as long as the confining
pressure is large enough.

proc-iahs.net/382/95/2020/

4 Preliminary monitoring network using DFOS in
coastal and deltaic regions

Since 2012, 15 land subsidence monitoring boreholes us-
ing DFOS have been set up in coastal and deltaic regions.
Among them, 9 boreholes are in coastal region (east coast of
Jiangsu, China) and 6 boreholes are in the low Yangtze River
delta (south Jiangsu and Shanghai). The borehole locations
are given in Fig. 2. The data acquisition is conducted every
2—-4 months so the seasonal variation of strata deformations
can be recorded. The depth of borehole is usually more than
100 m and the deepest borehole is up to 710 m.

5 Results

Figure 3a shows the typical results obtained by DFOS
(i.e. relative strain variation after subtracting the initial strain
distribution). The deformation of strata induced the strain
variation and the continuous strain distribution along the en-
tire borehole clearly identified the compacting strata. The
detailed results also provide the temporal and spatial char-
acteristics of the subsurface deformation. Figure 3b give the
preliminary results based on MRC obtained in the boreholes
located in the coastal regions. As can be seen that the sub-
surface deformation is quite inhomogeneous and some com-
pacting may occur within very thin layers. The precise depths
of deformation offer a clear image of the subsidence process
and important information on the understanding of the sub-
sidence mechanisms. The comparison between DFOS result
and that obtained by conventional method was conducted in
the Shengze borehole since 2015, and a very good consis-
tency in subsiding rate and trend was observed (Gu et al.,
2020), although such comparison was limited so far. Further
comparison between DFOS and other methods including ex-
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tensometers and InSAR is now in process and will be re-
ported in our future work.

6 Conclusions

It is challenging to monitoring the subsurface deformations
in coastal and deltaic regions. Distributed fiber optic sensing
(DFOS) provides “neuro” (i.e. sensing cables) to the sub-
surface and can open a window into subsurface deforma-
tion. The detailed results on the deformation allow us to pre-
cisely locate the compacting strata and better understand the
subsurface deformation with temporal and spatial character-
istics. A preliminary monitoring network using DFOS has
been set up in east and south Jiangsu and Shanghai, China,
including 15 boreholes and has been providing detailed sub-
surface deformation along those boreholes. It is foreseeable
that DFOS has very good potential in land subsidence mon-
itoring in coastal and deltaic regions, although further im-
provement on this novel method is still required.
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