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Abstract. Sinkholes are alarming and dangerous events, they have a worldwide occurrence, and are imposing
a potential risk to urban communities and the widely developed built environment. Losses due to catastrophic
sinkhole collapse, foundation, pavement and structural repairs, occur more often, due to the increased pressure
to develop even on sinkhole prone land, and the aging of existing water supply infrastructure in the majority of
cities. Remote sensing earth observation methods have proved to be valuable tools during the last two decades in
long-term sinkhole hazard assessment. Satellite air borne and ground earth observation methods have primarily
facilitated the wide detection of continuous displacement on the earth’s crust. National sinkholes catalogues are
necessary for town planers decision makers, and government authorities. In many instances the ground collapse
is the result of water ingress from old poorly maintained leaking pipelines, or extensive dewatering activities. In
the current study a comprehensive review of the current literature is presented in order to show experiences from
South Africa and present recent mapping using PSInSAR methodology in Centurion South Africa.

1 Introduction

Sinkholes are considered a dangerous natural and man-made
hazard, affecting transportation and infrastructure networks,
responsible for property loss and fatalities, in regions un-
derlain by soluble bedrock. In South Africa, large parts of
the urban fabric between Pretoria and Johannesburg are sit-
uated on Proterozoic dolomites of the Malmani Subgroup
(Chuniespoort Group, Transvaal Supergroup) formed in the
Transvaal Basin. During the previous decades, in the Far
West Rand, sinkholes occurrence was induced by exten-
sive dewatering of dolomite groundwater compartments due
to mining and resulted into the loss of life of 38 peo-
ple (De Bruyn and Bell, 2001). A community of approxi-
mately 30 000 households was relocated to safer ground in
a dolomite area west of Johannesburg, at a cost exceeding
USD 600 million (Buttrick et al., 2011).The rhythm of de-

velopment of these densely populated areas is on the rise, as
these megacities serve as the economical core of the country,
increasing the risks posed by surface subsidence and sink-
holes. Tshwane municipality also sources more than 40 mil-
lion litters of drinking water per day (5 %–8 % of require-
ments) from the dolomite aquifers, (Dippenaar et al., 2019).
Nof et al. (2019) propose that sinkhole potential maps are
mandatory for the planning and licensing of new infrastruc-
ture. The necessity for effective monitoring and installation
of early warning systems is required to reduce the risk for
people, infrastructure, and property. In the current study we
present on the findings of the application of PSInSAR in the
Centurion area South Africa and underline the potential of
the PSInSAR method for the monitoring and assessing sus-
ceptible to sinkhole hazard urban areas.
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2 Mechanism of sinkhole formation

A sinkhole is defined as a feature whose surface expression
may occur suddenly and manifests as a hole in the ground
that is typically circular in plan view. In international lit-
erature the term sinkhole is often synonymous with doline
(SANS1936, 2012). A subsidence is defined as a shallow
enclosed depression that occurs slowly over time and may
typically be circular, oval or linear in plan (SANS, 1936,
2012).The process of sinkhole formation is continuous dis-
solution of sub terrain soluble rocks, progressively leading
to the development of cavities. When the soil above these
cavities reach critical conditions (soil material exceeds shear
strength), soil collapses, as a result of reduction of soil ver-
tical stress. Main causes of underground cavities are the
ingress of water, the lowering of groundwater table, or ex-
tensive pumping leading to dewatering (Intrieri et al., 2015;
Dippenar et al., 2019). An idealized profile in karst is illus-
trated in Sowers (1996). One can recognize the succession of
the layers from the surface downwards to the dome and the
soluble bedrock. Intrieri et al. (2015) rank among sinkhole
predisposing factors, as the most dominant factor the lithol-
ogy i.e. the presence of soluble rocks subject to karstic pro-
cesses, followed by the pre-existence man made underground
cavities, of low geomechanical properties of the bedrock, and
(acidic) groundwater circulation promoting the dissolution of
evaporate and carbonate rocks.

The triggering is attributed to the input of water into the
ground which in return contributes to increase the load of the
soil material deposited in the vadose zone. This as a result
may reduce the geomechanical strength of the soils and pro-
mote internal erosion and dissolution processes (Gutiérrezet
al., 2009).

3 Remote sensing and sinkhole hazard

As part of the process of sinkhole risk management, hazard
evaluation, and susceptibility mapping sinkhole inventories
or catalogues need to be compiled as reliably as possible.
Satellite and airborne imaging technologies offered geosci-
entists the opportunity to collect valuable data, which serve
as input to sinkhole hazard assessment models in a short pe-
riod of time and under a cost-effective way. Remote sens-
ing methods both satellite, and airborne imaging have been
widely used to support sinkhole susceptibility assessment.
The use of these methods either supports the compilation of
extensive sinkhole catalogues or focuses on to the detection
of indicators as precursor phenomena. Interferometric syn-
thetic aperture radar (InSAR) and its derivatives have proved
to be the most valuable and widely used method in sinkhole
mapping and long-term deformation monitoring (Gutierrez
et al., 2014; Vaccari et al., 2018). According to Vaccari et
al. (2018), challenges associated with these big datasets are
primarily the development of analysis tools that can synthe-

Figure 1. Idealized subsurface profile in karst, with enlarging soil
void or dome above bedrock after Sowers (1996). (1) Remoulded
structureless layer with highly variable stiffness; (2) over consoli-
dated residual soil; (3) normally or lightly over consolidated resid-
ual soil; (4) randomly distributed rock pinnacles, rock blocks with
soft soils, and voids or soil domes; and (5) hydraulically active com-
petent limestone.

size them into products meaningful to the geotechnical com-
munity.

InSAR according to Rosen et al. (2000), operates by relat-
ing the coherent phase difference between radar echoes col-
lected from the same point on the ground at two different
observation times to the path-length difference between the
aircraft and the ground, enabling highly accurate measure-
ment of surface displacement in the line-of-sight direction.
Only the cumulative displacement that occurred during the
time interval between the imaging is measured, InSAR can-
not detect movement perpendicular to the imaging plane, but
along the line of sight (LOS).

Further methods and algorithms were developed to remove
topographic and atmospheric effects from the derived inter-
ferogram. The use of Differential InSAR (DInSAR) takes
into account the digital elevation model (DEM) of the im-
aged area to remove the topographic effects. As a result,
the deformation along LOS of the satellite is quantified. An
advanced DInSAR technique named permanent/persistent
scattered InSAR (PSInSAR) was introduced (Ferretti et al.,
2011), to resolve atmospheric interference problems. Vac-
cari et al. (2018) state that for those locations (perma-
nent/persistent scatterer – PS) that have a large signal-to-
noise ratio across several SAR images, PSInSAR can deliver
deformation measurements with an accuracy of less than 1
cm. PS method gives better results, when features such as
rocky outcrops, lamp posts, crash barriers, transmission tow-
ers, fences, buildings exist in the imaged area. Thus, in rural
areas, the density of PS can be extremely low. The introduc-
tion of an improved version of PSInSAR, SqueeSAR (10)
usually refers to as the second generation of PSInSar, with
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Figure 2. Distribution of sinkholes occurrences in the region
of Centurion, CBD area, early 1970s–mid-2012 (Oosthuizen
and Richardson, 2011), ©OpenStreetMap contributors 2019. Dis-
tributed under a Creative Commons BY-SA License Planet dump
(Data file from 1 October 2019 of database Geofabrik). Retrieved
from https://planet.openstreetmap.org.

an additional layer of statistical analysis is used to identify
regions providing a consistent and traceable response to the
radar pulses over time.

However, the literature documenting detection of precur-
sor phenomena through remote sensing is very limited. Many
researchers (Intrieri et al., 2015; Gutiérrez et al., 2019; Ma-
linowska et al., 2019), mention, that there is a need for an
identification of precursory deformation prior to the catas-
trophic main sinkhole events. Baer et al. (2018) suggest that
the temporal relationships between subsidence and sinkhole
collapse and particularly the factors controlling the duration
of the precursory subsidence are still poorly understood.

4 PSInSAR application in Centurion

Persistent Scatterers (PS) as previously discussed, is a multi-
interferometric technique which enables to generate dis-
placement time-series for chosen radar targets. The general
assumption of PS model is a linear temporal velocity of
ground movement (Ferreti et al., 2011). Based on this as-
sumption the reliability of ground motion observation allows
to be described through standard deviation. The accuracy of
PS method ranges from 0.1–1 mm yr−1 in the LOS direction
(Colesanti et al., 2003). One of the challenges when apply-
ing this method is that PS with high standard deviation val-
ues could present process artefacts due to low signal-to noise
ratio or non-linear motion. Thus, the analysis of spatial cor-
relation among PS with high standard deviation could lead to

Figure 3. Coverage of the study area with PS point’s overlaid
on former observed sinkhole events, ©OpenStreetMap contribu-
tors 2019. Distributed under a Creative Commons BY-SA License.
Planet dump (Data file from 1 October 2019 of database Geofabrik).
Retrieved from https://planet.openstreetmap.org.

identification of zones with non-linear displacement veloci-
ties.

On the 17 May 2017 a massive sinkhole occurred in the
densely built-up area on the corner of Gerhard Street and
Jean Avenue, in Centurion. In Fig. 2 the spatial distribution of
1100 events that occurred during the last four decades in the
area south of Pretoria (Oosthuizen and Richardson, 2011).
The occurrence of this event was a motivation to extend the
research on sinkhole prone areas identification for the Cen-
turion region. The analysis was aimed at investigating the
possible evidence of subtle movement related to the known
sinkholes in the area.

Ground movements were established based on Sentinel-
1A images acquired from the European Space Agency
(ESA). The images were acquired every 12 d from ascend-
ing and descending orbits. The interferometric wide swath
mode cover was of 250 km. The medium resolution was at a
range of 5 to 20 m and azimuth direction (ESA, 2013). The
vertical displacements were analysed for the period between
May 2015 to May 2017. For this study 12 and 24 scenes have
been acquired respectively from Sentinel-1satellite. The per-
pendicular baseline is given with respect to the master image
acquired at 18 April 2007. The interferograms were gener-
ated using the software SNAP and SNAPHU (ESA, 2017).

5 Results

For the processed data, we observe a good number of PS ob-
jects generally uniformly distributed over the study area. The
density of the PS was high mostly due to fact that study area
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Figure 4. Yearly subsidence for the period May 2015–May 2017,
©OpenStreetMap contributors 2019. Distributed under a Creative
Commons BY-SA License. Planet dump (Data file from 1 Oc-
tober 2019 of database Geofabrik). Retrieved from https://planet.
openstreetmap.org.

was intensely built up. The total number of the processed
points was 15 370 (Fig. 3). PS displacement are measured
along the satellite LOS, i.e. the sensor looking direction.
The year displacement velocities, for the sensing period ap-
pear spatially homogeneous, decreasing with negative values
(subsidence) to the N (Fig. 4).

The range of the vertical displacement is of −5 to
−12 mm yr−1. The PS to the centre and S of study area were
subsiding up to −3 mm yr−1. The observed increase of sub-
sidence close to the SW outskirts attributed to noise and pro-
cessing artefacts.

6 Discussion and conclusions

The maximum subsidence velocity of −12 mm yr−1 was ob-
served to the N part of Centurion, which agrees to the high
spatial density distribution of former sinkholes. The N of
study area belongs to a high extend to the South Africa Spa-
tial Forces. However, in the vicinity of sinkhole which oc-
curred on corner of Jean and Gerhardt street (blue circle
on Fig. 5), no significant linear subsidence was observed.
Theron (2017) and Intrieri et al. (2015) concur that in the case
of sinkholes, deformation in the order of a few mm to cm are
expected to occur days, months or even years before the fail-
ure. In general, measurable deformation has been observed
before major displacement occurs, although the main limi-
tation lies in the opportunity to observe such deformation.
Latest observation of ground movement before sinkhole de-
velopment revealed accelerating character of ground move-
ments (Malinowska et al., 2017). PS technique assumes that

Figure 5. Standard deviation of PS points in the vicinity of the cor-
ner Jean and Gerhardt street, ©OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License. Planet
dump (Data file from 1 October 2019 of database Geofabrik). Re-
trieved from https://planet.openstreetmap.org.

observed ground displacement has a linear character. When
the process becomes non-linear the values of the observed
standard deviation is higher. The analysis of the spatial distri-
bution of standard deviation led to the identification of a zone
with standard deviation higher than −7 mm yr−1 (Fig. 5), in
the vicinity of the recent sinkhole event.

Consistency of PS points distribution with high standard
deviation was very high.

The PSInSAR analysis was carried out using ascend-
ing and descending SAR images from Sentinel-1 between
May 2015 and May 2017. The PSInSAR study for the
temporal interval preceding sinkhole occurrence on the
17 May 2017 shows subsiding and stable zones. Most of Cen-
turion region seems to be relatively stable with an average
displacement velocity of 6 mm yr−1. In the N of study area,
the mean annual subsidence reached −12 mm yr−1.

The displacement in that area is linear and the standard
deviation does not exceed −2.0 mm yr−1. Observed ground
movement in the vicinity of sinkhole which occurred on the
17 May 2017 is inferred that did not have linear character.
Due to the known widespread presence of several sinkholes
in the Centurion area, it is tempting to associate these local-
ized, isolated displacement time series with the precursory
movements associated with the nearby, possibly undetected
sinkhole.

Comparison between levelling mean velocities and PS
mean vertical velocities is planned for comparison and vali-
dation of PSInSar measured displacement. Further measure-
ments are planned in the N of the study area.
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As demonstrated in the present study, SAR interferometry
may represent an essential tool to detect displacement asso-
ciated with sinkhole presence. Such studies can be used to
influence the engineering design choices for the risk miti-
gation in urbanized areas characterized by the presence of
soluble rocks.
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