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Abstract. This study examines how cone penetration test (CPT) parameters, such as cone tip resistance and
friction sleeve resistance, can be used to assess the compressibility of fine-grained soils across the Netherlands
based on a database of 286 paired CPTs and oedometer tests from across the country. This is done with the
aim of refining and simplifying the parameterisation of the Koppejan consolidation coefficients, a procedure
which can yield significant error and is prone to misinterpretation. It was found that there is significant potential
in using gradient boosting methods to obtain a relationship between the CPT parameters and the Koppejan
parameters, with further investigation required into the noise within the dataset and the acquisition of additional
high-quality samples. The use of such methods will offer a means of reducing the influence of human error or
misinterpretation on the prediction of settlement and provide further confidence in the use of machine learning
methods in engineering practice.

1 Introduction

Appropriately assessing the consolidation of soil under ap-
plied loads has long been a challenge for geotechnical engi-
neers. In the case of the Netherlands, soft clays and organic
soils dominate the subsurface and the heterogeneity and high
compressibility of these materials has resulted in a signifi-
cant margin of error being associated with settlement calcu-
lations, in the range of ± 30 % for Dutch practice (CROW,
2004). This is exacerbated by the effect of human subjec-
tivity on the parameterisation of variables associated with
settlement prediction models, a process which is highly de-
pendent on the experience and interpretation of the engineer.
Furthermore, given the sporadic and random nature of soil
sampling and the sample disturbance that may also result,
there is also a need to correlate these variables to continuous,
in situ tests in order to obtain a more representative parameter
for a soil layer. The cone penetration test (CPT) is an exam-
ple of such a test and involves penetrating the ground with
an instrumented steel cone and rod, measuring the cone tip
resistance qc and friction sleeve resistance fs as it penetrates

through the ground. It is used almost ubiquitously through-
out the Netherlands and many other countries worldwide due
to the many correlations its parameters have with basic soil
properties along with its ability to delineate soil stratigraphy
to a high resolution.

Of the settlement prediction models in the Netherlands,
the Koppejan model (Koppejan, 1948) is the most prevalent,
largely due to its simplicity and cost effectiveness in com-
parison to the more advanced models such as the a, b, c iso-
tache model (Den Haan, 1992, 1994) or the NEN-Bjerrum
model (Bjerrum, 1967). The model has also been extensively
implemented in Dutch geotechnical practice and thus, many
Dutch engineers have a high competence with the model. The
model is based on a combination of the logarithmic compres-
sion law proposed by Terzaghi (1925) and the creep law pro-
posed by Buisman (1936). The Koppejan parameters can be
obtained directly from incremental loading oedometer tests,
a procedure which assesses the one-dimensional consolida-
tion of a small soil specimen through the application of in-
creasing vertical loads over time on top of the specimen.
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Figure 1. Borehole–CPT pairings across the Netherlands
(©OpenStreetMap contributors YEAR. Distributed under a Cre-
ative Commons BY-SA License, see https://www.openstreetmap.
org/copyright, last access: 29 August 2019).

Hence, this study aims to explore the relationship between
the CPT and the Koppejan compressibility parameters using
both simple linear regression and machine learning, based
on a database of fine-grained clay soils obtained from sites
across the Netherlands.

2 Data source

2.1 Geology of the Netherlands

The Netherlands is situated in a delta formed by the Rhine,
Maas and Schelde rivers with much of the country being
flat and altered anthropogenically, evident from its canalised
streams, polders and dikes protecting the coastline and inland
regions. Most of the country is dominated by Quartenary de-
posits, with the western half of the country immediately un-
derlain by a very soft Holocene layer and the east by a firm
sandy Pleistocene layer (Maljers et al., 2015). In the context
of engineering applications, the western Holocene layer is
particularly troublesome due to its high compressibility, with
structures generally requiring long piles extending down to-
wards the Pleistocene layer below (Houkes, 2016).

Figure 2. Plot of the Koppejan C′ values against the corresponding
cone resistance qc, indicating the lack of a distinct visual relation-
ship.

2.2 Data description

The data originates primarily from road and rail projects ex-
ecuted by Fugro throughout the Netherlands between 2008
and 2018 (see Fig. 1). For each location, sampling boreholes
were automatically paired with CPT locations less than 25 m
away, with the closest CPT location chosen where applica-
ble. Given the size of the dataset, an individual geological
assessment of each site was deemed infeasible and hence, a
Python algorithm was developed for the oedometer–CPT test
pairing process (Duffy, 2019).

In total, 286 oedometer–CPT pairs were used for the anal-
ysis, with the Koppejan’s general constant of compressibility
at stresses greater than the preconsolidation pressure C, the
CPT cone resistance qc and the friction sleeve resistance fs
brought forward for further analysis.

3 Linear regression analysis

A direct visual relationship between C and the CPT param-
eters was not evident, with simple linear and multiple linear
regression models affirming the lack of correlation, an exam-
ple of which is shown in Fig. 2.

Based on the correlation devised by Buisman and
Huizinga (1944) shown in Eq. (1), an assessment was made
of the relationship between C′, qc and the in situ vertical
effective stress parameter σ0

′ which describes the vertical
stress transmitted between soil particles at a certain depth
as a result of the weight of soil above that same depth. In
obtaining σ0

′, the saturated unit weight correlation for Dutch
soils derived by Lengkeek et al. (2018) was used, assuming
a water table of one metre throughout.

C′ =
αmqc

σ0′
, (1)
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Table 1. Results of the project by project analysis.

Project αm r2 RMSE

Leeuwarden 1 −0.51 11.75
Amsterdam 1 0.43 4.38
Arnhem I 1.5 0.46 11.90
Geldermalsen 2 0.65 9.90
Groningen 1.5 0.73 4.19
Rotterdam 1.5 −0.05 2.80
Leiden 1 0.38 9.26
Arnhem II 1 0.50 7.14
Enschede 2 0.56 5.41

where αm is the constrained modulus cone factor.
The results of this localised assessment are shown in Ta-

ble 1. Results of this study have been quantified using both
the root mean square error (RMSE) and the coefficient of de-
termination (r2), a coefficient which expresses the proportion
of variance explained by the statistical model and is given in
its generalised form in Eq. (2):

r2
= 1−

SSres

SStot
(2)

where SSres is the sum of squares of the residuals and SStot
is the total sum of squares.

Indeed, although r2 is the square of the correlation coeffi-
cient r in the case of simple linear regression, it may also be
negative in other statistical models, indicating that the mean
of the data provides a better fit to the outcome than the fitted
statistical model itself.

For the most part, the correlation performs relatively well.
The choice of an αm coefficient can also be supported by
look-up tables such as that by Mitchell and Gardner (1975)
which uses the soil plasticity, water content and primary de-
scription. However, in the case of a single engineering project
where CPT and laboratory data is significantly more limited,
obtaining a robust αm value may prove to be relatively chal-
lenging. Hence it would be optimal if a more universal cor-
relation for the Netherlands could be found.

4 Machine learning

In order to explore more complex non-linear patterns in the
dataset, machine learning methods have been explored, in-
cluding artificial neural networks, gradient boosting and XG-
Boost. A preliminary assessment found that gradient boost-
ing produced the strongest results (Duffy, 2019).

4.1 Decision trees and gradient boosting

At an elementary level, decision trees are akin to a flow chart
in that each “node” represents a variable, each “branch” rep-
resents a decision and each “leaf” represents an outcome. It

Figure 3. Example of a basic decision tree.

can be used effectively for classification and regression pur-
poses, with an example of a simple decision tree shown in
Fig. 3.

In the process of creating a decision tree, the algorithm
partitions the dataset into subsets of variables of similar mag-
nitudes, ascertaining the effectiveness of potential splits as it
moves through the tree. In other words, the tree assesses the
improvement in model score (or reduction in error) caused
by creating the split. The algorithm converges when it can no
longer gain further information through the creation of more
splits or when it reaches a pre-specified limit imposed on the
model, known as the model’s “hyperparameters”. An exam-
ple of a hyperparameter may include the number of levels in
the tree or the minimum number of samples required in a leaf
node.

Boosting methods are an extension of the basic decision
tree algorithm whereby the algorithm uses a combination of
trees, with each new tree learning from the mistakes of pre-
vious trees. In this way, the model constantly aims to remove
or reduce any pattern that may be preeminent in the residuals
or the error. This is a core principle of the gradient boosting
algorithm (Friedman, 2001).

4.2 Input parameters

In order to produce a result that is reliable and not a product
of overfitting, 80 % of the data was randomly designated as
training data, with the remaining 20 % being designated as
unseen testing data. This split was chosen in order to retain a
sufficient amount of testing data so a more robust and reliable
result could be produced.

The input parameters chosen were qc, the ratio between
fs and qc (also known as the friction ratio Rf) and σ0

′, with
Rf chosen in lieu of fs so that the possibility of any inter-
pretability issues associated with the collinearity between qc
and fs was avoided. C′ was used as the output parameter.
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Figure 4. Learning curves for the gradient boosting model.

The gradient boosting model used as part of this study was
implemented using the MLPRegressor class of the scikit-
learn toolbox version 0.20.3 (Pedregosa et al., 2011), with
5-fold cross-validation used for hyperparameter tuning.

4.3 Results

The model produced an r2 score of 0.73 and 0.37 for the
training and testing sets respectively, with 5-fold cross vali-
dation returning a mean score of 0.36 with standard deviation
of 0.115. In the context of geotechnical engineering, this can
be described as a “medium to strong correlation” as per the
guidelines set out by Jakobsen (2014).

This model also returned feature importances of 0.34, 0.13
and 0.53 for qc, Rf and σ0

′ respectively. These scores high-
light the role each variable plays in the calculation of the
C′, with qc and σ0

′ being the more dominant features in de-
termining the model output, perhaps largely due to the rela-
tive inaccuracy associated with friction sleeve measurements
(Lunne et al., 1997).

Notwithstanding, Fig. 4 shows that both the training and
testing curves fail to converge together at higher sample
sizes. This is indicative of variance within the model, a prob-
lem that may be resolved by increasing the number of sam-
ples and thus allowing the learning curves to converge more
closely, redolent of a well-fitted model.

Furthermore, as illustrated by Fig. 5, there is significant
fluctuation in the r2 score as the random state of the model
is changed. In other words, if different training and testing
sets are taken and if the model learns slightly differently
compared to its last execution, the model score changes sig-
nificantly. Based on a collective assessment of one hundred
different random states, the median and maximum r2 scores
obtained were 0.33 and 0.68 respectively. It is surmised that
this instability is indicative of the variability and noise within
the dataset, consequently leading to the presence of many lo-
cal minima as the algorithms undergo gradient descent along
the objective function. As a result of this, the model may be

Figure 5. Histogram of results for the random state analysis.

particularly prone to converging within these local minima,
resulting in the dispersion of results as the random state is
changed.

Consequently, it is recommended that further high-quality
samples are sourced for the continued development of such
an algorithm in order to yield a more complete convergence
of the learning curves and to investigate the effect of the
change of random state on the r2 score. Further develop-
ment is also required into the automated process of pairing
the CPTs to the oedometer tests, with a manual assessment
taken where appropriate.

5 Conclusions

A major challenge in the geotechnical engineering industry
is reducing the significant amount of error associated with
settlement calculations. This research has aimed to minimise
the error associated with settlement prediction models by re-
fining the parameterisation process and reducing their sub-
jectivity by implementing a gradient boosting model, return-
ing the appropriate Koppejan parameter based on an input of
solely CPT data.

The model produced has indicated that there is some
promise in using such a method in developing a universal
correlation for fine-grained soils in the Netherlands and is
readily extendible to other settlement prediction models upon
the provision of appropriate data. However, it is apparent that
further high-quality samples are required in order to produce
a more robust and stable model.

Nonetheless, the results show that machine learning meth-
ods offer a means of discovering patterns in data which sim-
pler regression methods are unable to discover and with the
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refinement of the CPT data, more accurate models can be
developed.

Data availability. The dataset generated from this study is not
publicly available due to commercial restrictions, however is avail-
able from the corresponding author on reasonable request.
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