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Abstract. Conventional methods of monitoring wetlands and detecting changes over time can be time-
consuming and costly. Inaccessibility and remoteness of many wetlands is also a limiting factor. Hence, there
is a growing recognition of remote sensing techniques as a viable and cost-effective alternative to field-based
ecosystem monitoring. Wetlands encompass a diverse array of habitats, for example, fens, bogs, marshes, and
swamps. In this study, we concentrate on a natural wetland – Clara Bog, Co. Offaly, a raised bog situated in the
Irish midlands. The aim of the study is to identify and monitor the environmental conditions of the bog using
remote sensing techniques. Environmental conditions in this study refer to the vegetation composition of the bog
and whether it is in an intact (peat-forming) or degraded state. It can be described using vegetation, the presence
of water (soil moisture) and topography. Vegetation indices (VIs) derived from satellite data have been widely
used to assess variations in properties of vegetation. This study uses mid-resolution data from Sentinel-2 MSI,
Landsat 8 OLI for VI analysis. An initial study to delineate the boundary of the bog using the combination of
edge detection and segmentation techniques namely, entropy filtering, canny edge detection, and graph-cut seg-
mentation is performed. Once the bog boundary is defined, spectra of the delineated area are studied. VIs like
NDVI, ARVI, SAVI, NDWI, derived using Sentinel-2 MSI and Landsat 8 OLI are analysed. A digital elevation
model (DEM) was also used for better classification. All of these characteristics (features) serve as a basis for
classifying the bog into broad vegetation communities (termed “ecotopes”) that indicate the quality of raised bog
habitat. This analysis is validated using field derived ecotopes. The results show that, by using spectral informa-
tion and vegetation index clustering, an additional linkage can be established between spectral RS signatures and
wetland ecotopes. Hence, the benefit of the study is in understanding ecosystem (bog) environmental conditions
and in defining appropriate metrics by which changes in the conditions can be monitored.

1 Introduction

A bog is a type of wetland which primarily depends on rain-
fall for water and nutrients. Bogs can be categorised as blan-
ket bog and raised bog. Raised bogs are discrete, raised,
dome-shaped masses of peat occupying former lakes or shal-
low depressions in the landscape (Fossitt, 2000). They occur
throughout the midlands of Ireland (Felicity Hayes-McCoy,
2017) and in this study, we focus on one of the largest raised
bogs in Ireland, Clara Bog, Co. Offaly. Monitoring wetland
structure and function typically requires recurrent site vis-
its, which can be prohibitively labour intensive, costly and
time-consuming. Monitoring is often unfeasible due to the
poor accessibility, and is thus, only practical on relatively

small areas (Adam et al., 2010). To acquire frequent mea-
surements and timely information remote sensing (RS) is a
cost-effective tool. Remote sensing provides invaluable in-
formation to characterize and measure the conditions of wet-
lands and their functioning.

The current state of art primarily focuses on mapping dif-
ferent types of the wetlands (Mahdavi et al., 2017). The
mapping is done using different wavelengths and spectral
response of the objects. Satellite imagery-derived vegeta-
tion indices can be effectively used for assessing the vegeta-
tion status of an ecosystem. Vegetation communities present
within an ecosystem are defined as ecotopes. The Normal-
ized Difference Vegetation Index (NDVI), Soil Adjusted
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Figure 1. Clara Bog, Co. Offaly.

Vegetation Index (SAVI), Atmospherically Resistant Vege-
tation Index (ARVI) are the most effective vegetation indices
stated in the literature (Wiegand et al., 1991). Soil moisture
is not directly derivable from the optical bands. The Nor-
malized Difference Water Index (NDWI) using near-infrared
(NIR) and short-wave infrared (SWIR) bands give an indica-
tion of wetness of the surface inferred as soil moisture. These
indices can be used to provide a clearer picture of vegetation
and water extent in an area.

Topography plays a vital role in analysing an ecosystem.
It gives an accurate idea of elevation difference present be-
tween various plant communities. Light detection and rang-
ing (LiDAR) provides with point cloud information which
can be used to deduce the topography of an area. LiDAR sys-
tems can be terrestrial, airborne, or space-borne. Normally,
terrestrial systems are used for 3-D reconstruction, whereas
air and space systems are utilized for remote sensing and
wide territory mapping. In this study, an airborne LiDAR de-
rived DEM is used for analysing the topographic extent of
the bog.

For analysis of the RS data, various machine learning tools
have proven to be useful (Lu and Weng, 2007). There are
many state of the art segmentation and classification algo-
rithms available. It is necessary to make full use of the ad-
vantages of different algorithms on the basis of multi-feature
fusion, so as to achieve better segmentation effect (Yuheng
and Hao, 2017). Hence, in this study a combination of seg-
mentation algorithms is deployed. Classification accuracy is
tested using various classifiers namely, SVM, Bagged Tree
and Subspace KNN. SVM can be tuned using the value of op-

timization parameter, kernel used and hence, overfitting can
be avoided. Bagged Tree, Subspace KNN are ensemble clas-
sifiers. The idea behind ensemble classifiers is to learn from a
set of classifiers rather than a single classifier. The final result
is either the average of the result from all the classifiers or is
obtained using majority voting. An ensemble learner is more
robust and less manpower is required for tuning the param-
eters. Here, a comparative study on the performance of the
classifiers is carried out using freely available Landsat 8 OLI
and Sentinel 2 MSI data for monitoring ecological condition
and mapping ecotopes present inside the bog.

2 Materials and methodology

2.1 Study region and datasets

The site selected for this study is one of the largest bogs in
Ireland, Clara Bog (Fig. 1), covering approximately 840 ha
of which 443.36 ha is uncut high bog with the remaining
393.18 ha mostly cutover bog (About Clara Bog, 2018).

In the Clara bog, 9 broad categories of ecotopes have been
defined namely, Sub-marginal, Sub-central, Marginal, Cen-
tral, Inactive flush, Active flush, Open water, Face bank and
Bog woodland.

The health of the bog is indicated by its ability to form
peat. The formation of peat is depicted by central, subcentral
and active flush. Ecotopes like marginal, submarginal are in-
dicative of peatland degradation (Fernandez Valverde, 2012).

For the best description of the bogs following open source
data is used:
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Figure 2. Footprints over Clara, Co. Offaly, Ireland (a) Sentinel-
2, L2A, Tile_Id – 29UNV (https://scihub.copernicus.eu, last ac-
cess: 5 March 2018) (b) Landsat-8, OLI+TIRS, Path 207, Row 023
(https://earthexplorer.usgs.gov/, last access: 19 February 2018)

1. Sentinel-2 Multispectral Instrument Level 2A (S2-
MSIL2A).

S2MSIL2A has bottom-of-atmosphere (BOA) re-
flectance in cartographic geometry. The granules
also called tiles, are 100× 100 km2 ortho-images in
UTM/WGS84 projection. The L2A-BOA product is at-
mospherically corrected and ready to use (Gatti and
Bertolini, 2013) and is accessed from https://scihub.
copernicus.eu/ (last access: 5 March 2018). The area at
test lies under tile id – T29UNV. Sentinel-2 has total of
12 bands out of which 9 bands are used for analysis in
this study (Band 2–8A, Band 11).

2. Landsat 8 Combined (LC08).

Landsat 8 carries two push-broom instruments: The Op-
erational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS) in UTM/WGS84 projection. Atmospher-
ically corrected, ready to use data is accessed from
http://earthexplorer.usgs.gov/ (last access: 19 Febru-
ary 2018). The area at test lies under path 207, row 23.
In this study, 12 bands are used for analysis (Band 1–
11+Pixel quality assessment, QA) (Zanter, 2016).

The latitde-longitude extent of the Clara bog is
53◦19′47′′ N, 7◦39′34′′W; 53◦18′55′′ N, 7◦37′24′′W. Im-
ages used are acquired by S2 and L8 on the same date
(20 June 2017). Image from Sentinel-2 is resampled to 10 m
(appropriate bands) and image from Landsat 8 is resampled
to 30 m. The footprints for both the satellites can be seen in
Fig. 2.

2.2 Methodology

The methodology used is described in the following
flowchart (Fig. 3). First, it is necessary to delineate the
ecosystem from the surrounding area in order to minimise

Figure 3. Methodology Flowchart.

the effect of outliers; this is achieved using segmentation al-
gorithms. The delineated ecosystem is further divided into
vegetation communities or ecotopes using a set of ensemble
classifiers, namely Bagged Tree and Subspace KNN along
with SVM.

2.3 Vegetation Indices and Soil Moisture

The vegetation indices used in this
study are (Vegetation Indices, 2018):

1. Normalized Difference Vegetation Index

NDVI= (NIR−Red)/ (NIR+Red) (1)

NDVI indicates the amount of vegetation, distinguishes
vegetation from the soil, minimizes topographic effects,
etc.

2. Soil Adjusted Vegetation Index

SAVI= [(NIR−Red)/ (NIR+Red+L)] · (1+L) (2)

where L is a soil correction factor.

3. Atmospherically Resisted Vegetation Index

ARVI= (NIR−RB)/ (NIR+RB) (3)

where RB is a combination of the reflectance in the Blue
(B) and Red (R) channels RB=R−γ (B−R) and γ de-
pends on the aerosol type.

4. Soil Moisture: Normalized Difference Water Index

NDWI= (NIR−SWIR)/ (NIR+SWIR) (4)

Values range from −1, very low moisture level, to 1
very high moisture level.

Hence, there are a total of 5 extra layers i.e., NDVI, SAVI,
ARVI, NDWI, and DEM along with satellite bands which are
fed into the algorithm as input characteristics. Therefore, for
Sentinel-2 data set there is a total of 14 layers and for Landsat
8 there is a total of 17 layers.
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Figure 4. (a) Original Clara Image (b) Entropy Filter Image
(c) Canny Edge Image (d) Boundary Delineated Image.

2.4 Bog Boundary Delineation

Delineation of the wetland extent was carried out using three
algorithms in conjunction:

1. Entropy Filtering: measures the relative change in en-
tropy for detection of edges. All the areas with potential
objects are thus highlighted.

2. Canny Edge Detection: Initially, the intensity gradient is
measured according to which background pixels are re-
moved, i.e. only thin lines depicting edges remain. The
algorithm uses 2 thresholds (upper and lower) to accept
the pixels as the edge.

3. Graph Cut Segmentation: Divides every pixel into fore-
ground (source) and background (sink) based on proba-
bility and neighbourhood information. Two major steps
then follow, first is to construct the graph and the second
is to produce min cut (i.e. max flow).

Since the ecosystem and surrounding areas contain distinct
vegetation, the NDVI image is used as the base image (Bi)
for defining the bog boundary for Sentinel data, and band 8
(panchromatic) for Landsat 8 dataset.

Algorithm 1 Bog Boundary Delineation

EBi← Entropy_filter(Bi)
CBi← CannyEdge_Detect(Bi,EBi)
GCi← Graph_Cut(Bi,CBi)

Graph Cut image (GCi) is the delineated image. From
GCi, spurious regions are removed on the basis of thresh-
olding (Fig. 4).

2.5 Ecotope Identification and Classification

In this study, we have explored the applicability of pixel
based, supervised classification on a raised bog. The clas-
sifier is first trained on a subset of available data, and then
tested on a new location (test) to predict the classes (eco-
topes) present. Here, we are doing a direct transfer of pixel-
based knowledge from the training area to the testing area.
The following classifiers are used for this purpose:

1. SVM – These are supervised learning models with as-
sociated learning algorithms that analyse data used for
classification and regression analysis. Given a set of
training data, an SVM training algorithm builds a model
that assigns new data to one of the two categories, mak-
ing it a non-probabilistic binary linear classifier (Cortes
and Vapnik, 1995).

2. Bagged Tree – Ensemble, supervised classifier. It ap-
proaches to combine several machine learning tech-
niques into one predictive model in order to decrease the
variance hence, tuning the prediction into an expected
outcome (Ensembles, 2018).

3. Subspace KNN – Similar to Bagging, subspace KNN is
an ensemble method to reduce the correlation between
estimators (Ho, 1998).

2.6 Validation

In this study, five major classes are considered namely Sub-
marginal, Sub-central, Marginal, Central and Active flush as
these are the key ecological classes indicating bog condition.

The result achieved is verified using field derived ecotope
map (Fig. 5). Initially, a classification model is created using
training data. For each of the classifier and data set, Model
Accuracy (MA), Transfer Accuracy (TA) and Kappa Coeffi-
cient (kappa) is measured. The model accuracy (MA) is mea-
sured using 5-fold validation of training data. The transfer
accuracy (TA) is the test accuracy when the model is applied
to the testing data.

Ground truth is divided into:

– Case 1: Training (50 %) and Testing (50 %)

– Case 2: Training (70 %) and Testing (30 %)

3 Results and discussion

The results obtained using the aforementioned algorithms are
validated using field derived ecotopes. The spatial location of
the ecotopes is not weather dependent, compared to satellite
imagery and corresponding vegetation indices which change
with respect to weather and other environmental conditions.
This study primarily highlights the condition of the raised
bog during the summer season. TA signifies the scope of
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Figure 5. Ground truth with 5 ecotopes.

Table 1. Accuracies for all the cases.

MA % TA % kappa

Sentinel-2 Case 1:

SVM 73.96 32.40 0.1302
Bagged Tree 83.63 53.46 0.3424
Subspace KNN 81.65 52.95 0.3370

Sentinel-2 Case 2:

SVM 71.71 36.36 0.2050
Bagged Tree 83.38 65.23 0.5013
Subspace KNN 62.02 36.50 0.1922

Landsat-8 Case 1:

SVM 77.82 26.76 0.1305
Bagged Tree 87.27 53.87 0.3883
Subspace KNN 87.22 51.97 0.3635

Landsat-8 Case 2:

SVM 72.92 29.06 0.1711
Bagged Tree 85.55 52.69 0.3539
Subspace KNN 85.00 52.71 0.3549

transferring the knowledge gained from the first half (Train)
to identify ecotopes in the second half (Test).

Table 1 states the accuracy achieved using the aforemen-
tioned methodology:

3.1 Discussion

In this study, we have studied the ecological conditions of a
raised bog using data from Sentinel-2, Landsat-8, their vege-
tation derivatives, and DEM. The key points in the result are
discussed below:

1. The use of a single algorithm for boundary delineation
leads to the formation of smaller, non-connected objects
and hence, the bog is not delineated properly. Using the
entropy filter, canny edge detection, and Graph Cut in

Table 2. Number of pixels per class – S2.

Name of Ecotope Number of pixels

Submarginal 13 771
Subcentral 4633
Marginal 4913
Central 1192
Active Flush 2443
Background 12 248

conjunction proved to be an effective way of delineating
a complex structure from a middle-resolution image.

2. SVM achieved the highest accuracy in the delineation
of the submarginal ecotope, but was not viable for
marginal, active flush or background. The classifier
has confused between marginal, active flush and back-
ground, giving 0 % class accuracy in both datasets
(Fig. 6). SVM has a major drawback of tuning the pa-
rameters. In this study the parameters were kept con-
stant for both datasets, which increased the chances of
overfitting, hence, the low accuracy.

3. Ensemble classifiers (BT, SKNN) show similar results
due to the fact that the ensemble methods are gener-
ally consistent (in terms of their effect on accuracy)
(Figs. 7, 8) (Maclin and Opitz, 2011).

4. The test (OA) accuracy (transfer) is also highly depen-
dent on the number of training pixels (Table 2).

Total pixels in the image (Sentinel 2 MSI; 160 ·
245)= 39 200. The Submarginal ecotope is most cor-
rectly classified by all the classifiers followed by
Marginal. Since other ecotopes are present in much
lower quantities (compared to submarginal and back-
ground), they are not identified correctly.

5. Similarity between the signatures of the classes:

Jeffries-Matusita (JM) distance is a widely used method
for feature selection in multiclass problems (Swain and
Davis, 1978). The values of JM distance (Table 3) be-
tween the ROI pixels depicts low spectral separability
between the ecotopes. These values were measured us-
ing 100 points from each ecotope-pair. A lower value
means low separability and higher value shows higher
spectral separability between ecotope pair. A higher
value of JM distance is desirable for better identifica-
tion of classes (Whelley et al., 2014).
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Figure 6. SVM Classified Image: (a) Sentinel-2 Case 1 (b) Sentinel-2 Case 2 (c) Landsat-8 Case 1 (d) Landsat-8 Case 2.

Figure 7. Bagged Tree Classified Image: (a) Sentinel-2 Case 1 (b) Sentinel-2 Case 2 (c) Landsat-8 Case 1 (d) Landsat-8 Case 2.

Figure 8. Subspace KNN Classified Image: (a) Sentinel-2 Case 1 (b) Sentinel-2 Case 2 (c) Landsat-8 Case 1 (d) Landsat-8 Case 2.

Table 3. JM distance between ecotopes

Ecotope Pair JM distance

Submarginal and Subcentral 0.22
Submarginal and Marginal 0.85
Subcentral and Central 0.67
Central and Activeflush 1.48

4 Conclusions

In this study, we studied the application of mid-resolution
satellite data for classification of a raised bog. The study
was carried out using data from two satellites, Sentinel-2
and Landsat-8. The data used was resampled to 10 m for ap-
propriate Sentinel-2 bands and 30 m for Landsat-8. The fi-
nal classification accuracy was similar for both the satellite,
unaffected by the resolution of the images. The study ini-
tially describes a competent way of boundary delineation us-
ing a series of edge detection techniques. Vegetation indices

along with soil moisture and DEM information are used as
features to train the classification algorithms. Bagged tree
(BT) classifier proves to be the best classifier for classifica-
tion of the raised bog providing better accuracy than SVM
or SKNN. This is due to the nature of the ensemble clas-
sifier to reduce variance and avoid overfitting. Transfer of
knowledge directly from train location to test location is not
achieved effectively due to limitations in data-resolution and
the amount of input training pixels. The study suggests that
transfer of knowledge is effective between similar ecosys-
tems when there is a distinct difference in the distribution of
various ecotopes and pixels can be unmixed.

Data availability. The data for this study is taken from Landsat-
8 and Sentinel-2, and is openly available to use. Landsat-8
(USGS EarthExplorer, retrieved 19 February 2018 from https://
earthexplorer.usgs.gov/), Sentinel-2 (Copernicus Open Access Hub,
retrieved 5 March 2018 from https://scihub.copernicus.eu/). Eco-
tope data was provided by the National Parks and Wildlife Service
as vector ESRI shapefiles and is available upon request.
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