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Abstract. The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of
Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implica-
tions for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed
meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling
model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which
were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB
for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption
decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an
increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario,
which were both larger than 2 kg m−3. Compared with that of the period from 2012 to 2015, the water produc-
tivity during 2018–2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and
15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

1 Introduction

The Fifth Assessment Report, issued by the Inter-
governmental Panel on Climate Change (IPCC), affirmed the
reality of climate warming. Since 1950s, the global climate
has changed dramatically and these changes have involved
atmospheric warming, shrinking glaciers, sea level rise, and
increased levels of greenhouse gases. From 1880 to 2012, the
global average temperature increased by 0.85 ◦C, and it was
warmer in the most recent three decades than in any previous
decade (IPCC, 2013). A climate model based on greenhouse
gas emission is the basis for predicting future climate change.
The Fifth Assessment Report of the IPCC presented a new
generation of future climate change scenarios called Rep-
resentative Concentration Pathways (RCPs) (IPCC, 2013).
The rate of increase of the ground surface air temperature
in China, over the past 100 years, is higher than the world

average during this same period. There is a significant tem-
perature increase in the inland areas of Northwest China,
with the ground surface air temperature increasing by more
than 0.5 ◦C since the 1980s (Zuo et al., 2004). The mean an-
nual precipitation of China is 649 mm, while that in North-
west China it is only 161 mm. Due to the complex landscape,
arid climate, and low vegetation coverage, Northwest China
is relatively more vulnerable than other regions to climate
change and this is likely to affect the agricultural productiv-
ity of the region (Wang, 2016).

The application of downscaling methods in predicting fu-
ture climate change is an important approach used for stud-
ies on regional climate change (Chen et al., 2012; Hu et
al., 2013). Downscaling methods can be divided into three
types: dynamical downscaling, statistical downscaling, and
mixed downscaling that combines both dynamical and statis-
tical methods (Frey-Buness et al., 1995). Dynamical down-
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scaling is time-consuming, requires a large computational
load, and relies on boundary conditions provided by the gen-
eral circulation model (GCM) (Fan et al., 2005). The mixed
dynamical and statistical downscaling method is still in the
exploratory stage. However, statistical downscaling requires
a relatively small computational load. The model is easy to
program and implement and operation of the model is less
time-consuming. As such, statistical downscaling has been
widely adopted (Chu et al., 2010; Huang et al., 2012; Samadi
et al., 2013).

The Statistical Downscaling Model (SDSM) is a decision-
making support tool developed by Wilby et al. (1999, 2002,
2003), which is used to study the impacts of regional and lo-
cal climate change. Coupled with multiple regression and a
weather generator, the model is easy to operate, and the sta-
tistically downscaled scenario could better evaluate the im-
pacts of regional climate change than the scenario directly
simulated by the GCM. Fan et al. (2007) found that the
SDSM could effectively simulate the temperature in North
China where future temperatures indicate a clear upward
trend. Dai et al. (2015) demonstrated that the SDSM was
highly accurate for monthly temperature simulation, but the
simulated value of monthly precipitation exceeded the ac-
tual value. Hao et al. (2015) used SDSM to develop a down-
scaling forecast of the spatial and temporal variations of
future temperature and precipitation in the Hexi Corridor.
The daily minimum temperature, daily maximum tempera-
ture and daily mean temperature were found to be rising,
with the increases of the maximum temperature and the mean
temperature greater than that of the minimum temperature.
The precipitation in the Hexi Corridor had strong regional
characteristics, increasing in the western region and decreas-
ing in the central and eastern regions. Xiong and Yan (2013)
conducted dynamic downscaling using a high-resolution re-
gional climate model in the Heihe River Basin (HRB). The
model was able to simulate the annual and seasonal spatial
distribution of precipitation in the HRB and annual variation
of precipitation in different regions of this basin. However,
the simulated values of oasis areas in the middle reaches
of the HRB deviated more from the observed values than
in other areas. Cao et al. (2008) conducted a study on corn
output in the oasis irrigation areas of the Hexi Corridor in-
dicating that the accumulated temperature in irrigated areas
in the Hexi Corridor was significantly increased and associ-
ated with global warming. The active accumulated tempera-
ture during corn growth is a key factor affecting corn yield.
As the climate in the irrigated areas warms, the corn yield in
selected local areas has increased. The yield increases, from
west to east, were 124, 186, and 301 %, respectively. Zhao et
al. (2012) found that temperatures in the HRB increased sig-
nificantly from 1960 to 2009. The increased temperatures af-
fected the crop growth period, bringing both advantages and
problems. There were increased yields of spring wheat, corn,
and cotton, but higher pest population levels. Agriculture is
significantly affected by climate change.

The arid inland area in Northwest China is an important
producer of commodity grains and also a core area of the
Silk Road Economic Belt. The HRB is the second largest in-
land river basin in the arid areas of Northwest China. The
variation characteristics of water productivity of oasis in this
area related to climate change are significant for the sustain-
able development of agriculture and the development of the
One Belt One Road initiative. We integrated a multi-model
adaptability evaluation method and the SDSM model, by us-
ing data from observation stations, GCMs, and ERA-40 re-
analysis to generate multi-model climate change scenarios,
which were used to drive the SWAP-EPIC model to simulate
crop growth, and assess the response of water productivity of
oasis to climate change.

2 Data and methodology

2.1 Study area

The Heihe River Basin is located in the arid interior area
of Northwest China. It is the second largest inland river
basin in China and is in the middle of the Hexi Corridor,
located between 98–101.5◦ E and 38–42◦ N (Wang, 2016).
The Heihe River originates in the northern Qilian Mountains
and it is adjacent to the Shiyang River Basin in the east and
the Shule River Basin in the west. With a total length of
821 km and covering a total area of 142 900 km2, the Heihe
River area has an annual runoff of 1.58 billion m3 (Zhang et
al., 2005; Jiang, 2013). The HRB is divided by the Yingluo
Gorge and the Zhengyi Gorge into the upper, middle and
lower reaches. Located above the Yingluo Gorge, the up-
per reaches form the major runoff producing area at an al-
titude of 1680–5280 m with a cold and humid climate. The
middle reaches are located between the Yingshuo Gorge and
the Zhengyi Gorge where the terrain is a mix of mountains
and plains. With an elevation of 1300–1680 m, the middle
reaches have a mean annual precipitation of 140 mm, evap-
oration of 141 mm, abundant light and heat resources, and
well-developed agriculture. The middle reaches are the main
water consumption area in the HRB. The lower reaches occur
below the Zhengyi Gorge at elevations between 980–1300 m.
The lower reaches are characterized by open terrain, dry cli-
mate, and sparse vegetation, and this is a main source of
sandstorms in North China (Shen, 2006; Guo et al., 2011;
Jiang, 2013; Zang and Liu, 2013).

2.2 Data

Data collected by the meteorological stations, the GCM data
and the ERA-40 reanalysis data were the basic data used in
this study.

1. Data collected by the meteorological stations included
the daily precipitation, daily mean temperature, daily
maximum temperature and daily minimum temperature.
Data were collected by 17 meteorological stations from
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Figure 1. Location of the Heihe River Basin and hydro-
meteorological stations.

1961 to 2000 in the Heihe River Basin (Fig. 1). The data
were extracted from China Meteorological Data Service
Center (CMDC) http://data.cma.cn/.

2. Meteorological data of 23 GCMs were selected from
CMIP5 in CEDA (Center for Environmental Data Anal-
ysis), including monthly and daily data. The monthly
data over the time span from 1961 to 2000 were used for
the GCM adaptability evaluation and were uniformly in-
terpolated to a 2◦× 2◦ resolution. The daily data were
used for statistical downscaling to generate the mete-
orological data of the baseline period and the future
climate scenario data. The baseline period was from
1976 to 2005, and the future climate scenarios corre-
sponded to the time period from 2018 to 2047, includ-
ing the scenarios of three RCPs (RCP2.6, RCP4.5, and
RCP8.5) (Wang et al., 2012). The selected GCMs and
their source information refer to Guo (2017).

3. The reanalysis datasets have been widely used in cli-
mate change projections, such ERA-40 from the Eu-
ropean Center for Medium-Range Weather Forecasts
(ECMWF), NCEP (Nation Centers for Environmental
Prediction), however the reliability of the datasets at dif-
ferent time-spatial scales shows significant differences.
In China, especially in the western part, the reliability
of the ERA-40 is higher than the NCEP and other re-
analysis datasets (Zhao and Fu, 2006; Chao, 2011; Xie

et al., 2011). In this study, ERA-40 reanalysis monthly
and daily data from 1961 to 2000 were downloaded
from the ECMWF (http://apps.ecmwf.int/datasets/data/
era40-daily/levtype=sfc/), with the meteorological ele-
ments being the same as the large-scale predictors of the
GCM at a 2◦× 2◦ resolution.

2.3 Methodology

2.3.1 Multi-model adaptability evaluation

The GCM is the most feasible current method for predicting
large-scale climate changes. However, due to the differences
between each GCM in resolution, initial conditions, and
mechanisms, the results have significant uncertainty (Cox
and Stephenson, 2007). There are large differences between
the simulation results of different GCM models, and the ac-
curacy of simulation results is closely related to the simulated
area and the simulated climate variables (Jiang et al., 2011;
Johnson and Sharma, 2012; Liu et al., 2013). Therefore, be-
fore GCM data are used to study regional climate changes,
it is necessary to conduct an adaptability evaluation on the
simulation ability of each GCM model in the study area and
then select the GCM model that is best adapted to the study
area.

The rank scoring method is advantageous because it eval-
uates the GCM with multiple criteria, and rank scoring has
been effectively used in the adaptability evaluation of multi-
ple regions (Rosenberg et al., 2010; Liu et al., 2011; Chen et
al., 2018). In this study, the rank scoring method was used as
the evaluation method. First, the monthly data of 23 GCMs in
CMIP5 from 1961 to 2000 were selected, and the GCM out-
put data were uniformly interpolated to a grid of 2◦×2◦ res-
olution. The monthly precipitation, monthly mean tempera-
ture, monthly maximum temperature and monthly minimum
temperature data collected by 17 meteorological stations in
the Heihe River Basin were selected as the observation data.
A total of 11 statistical eigenvalues of the 23 GCMs and the
measured data were compared to evaluate the applicability of
the GCM in this area and to select the optimal GCM for each
climate variable.

The method was calculated as follows:

Rs i =
Xmax−Xi

Xmax−Xmin
× 10, (1)

where i is the model number, Xi denotes the relative error be-
tween the simulated value and the measured value for a sta-
tistical characteristic, and Xmin and Xmax represent the min-
imum and maximum relative error, respectively. The smaller
the Xi , the larger the Rs .

2.3.2 SDSM

SDSM is a statistical downscaling model coupled with mul-
tiple regression and a weather generator. It is easy to operate
and is widely applied in the downscaling of regional climate
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changes (Fan et al., 2007). The main content of the SDSM
includes two aspects (Yin et al., 2010): First, build the sta-
tistical relationship between the predictand (the climatic ele-
ments of the stations) and the predictor (atmospheric circula-
tion factor), and then determine the model. Second, assemble
the future sequence data of the climatic elements based on the
determined model.

The relationship between a predictand and a predictor can
be expressed as:

R = F (L) (2)

where R is the predictand, L is the predictor, and F denotes
a deterministic or random function.

The predictand should be selected according to the study
aim, and the selection of a predictor should abide by the fol-
lowing principles (Liu et al., 2008): it must be a factor exist-
ing in both the measured data and the GCM data; it must be
a factor that can be accurately simulated by the GCM; and it
must have a physical connection with the predictand.

After the predictors are screened, the SDSM will estab-
lish a statistical relationship according to the selected predic-
tors and predictand and then determine the parameters of the
multiple regression equation using the effective dual simplex
method. This involves calibration of the model (Yin et al.,
2010; Liu et al., 2011). After the model is determined, future
climate scenarios output by the GCM can be used to simu-
late future data of the stations’ climatic elements and com-
pare these with the climatic elements in the baseline period.
This allows analysis of the future variation trend of climatic
elements in the study area (Liu et al., 2008; Yin et al., 2010).

2.3.3 The SWAP-EPIC model

The soil water atmosphere plant (SWAP) model consists of
sub-modules such as soil water movement, solute transport,
heat transfer, soil evaporation, crop transpiration, and crop
growth. Each of the sub-modules influence and interact with
each other. The model is mainly used to simulate water and
salt transport and crop growth at a farmland scale (Xu, 2006).
The environmental policy integrated climate (EPIC) model
mainly includes crop growth, hydrology, soil temperature,
soil erosion, and nutrient cycling (Fan et al., 2012).

The simple crop module of the SWAP model cannot di-
rectly simulate the growth process and yield of crops and
so it is necessary to manually input observation data of crop
growth, which will then be used in the interactive computa-
tions with water and salt transport. The detailed crop growth
module WOFOST is complex and requires so many obser-
vational data and empirical parameters that the application
scope of the model is limited. Therefore, Xu et al. (2013)
constructed an SWAP-EPIC model that achieved the im-
proved coupling simulation of soil water and salt dynamic
and crop growth at a farmland scale.

Table 1. Changes of precipitation and air temperature during the
future 30 years under RCP scenarios.

Change RCP2.6 RCP4.5 RCP8.5

Precipitation (%) −4.57 −5.22 −2.40
Tmean (◦) 0.84 1.14 1.28
Tmax (◦) 1.23 1.35 1.55
Tmin (◦) 1.08 1.18 1.68

3 Results and discussion

3.1 CMIP5 multi-model adaptability evaluation

Figure 2 shows the evaluation results of the 23 GCMs in-
dicating their influences on the precipitation, mean temper-
ature, maximum temperature, and minimum temperature.
The GCMs with the optimal overall simulation effects were
CNRM-CM5, CCSM4, MPI-ESM-LR, and BCC-CSM1-1-
M. There were significant differences between the simula-
tion effects of the 23 GCMs on precipitation. The Rs scores
of all the GCMs were above 5.0 in terms of mean tem-
perature simulation, implying good simulation effects. The
Rs score of the maximum temperature and the minimum
temperature ranged from 3.43–6.33 and 3.32–6.93, respec-
tively. CCSM4 (8.55) had the best simulation effect for mean
temperature, however MPM-ESM-MR (8.28) was finally se-
lected as the downscaling GCM due to its more sufficient
data series. Therefore, CNRM-CM5, MPI-ESM-MR, MPI-
ESM-LR, and BCC-CSM1-1-M were selected as the GCMs
to construct the future scenarios of precipitation, mean tem-
perature, maximum temperature, and minimum temperature,
respectively, in the Heihe River Basin.

3.2 Construction of multi-model climate change
scenarios

Table 1 shows the variation of precipitation compared to the
baseline period in the HRB in the three future climate sce-
narios. According to the table, the precipitation in the future
tends to decrease overall with the decrease being especially
obvious in the RCP4.5 scenario, reaching 5.22 %.

The mean air temperature in the three future climate sce-
narios showed an increasing trend compared with that in the
baseline period, and the temperature rise was more promi-
nent as the RCP increased. The temperature rise, ranked from
high to low, was RCP8.5 > RCP4.5 > RCP2.6. In the RCP4.5
and RCP8.5 scenarios, mean air temperature generally in-
creased above 1 ◦C, while in the RCP2.6 scenario, the tem-
perature increased within 1 ◦C. The temperature in RCP2.6,
RCP4.5 and RCP8.5 increased by 0.84, 1.14, and 1.28 ◦C,
respectively compared with the baseline period.

From the perspective of the entire basin, Table 1 shows the
increase in the mean annual maximum temperature in the en-
tire basin. The maximum temperature in the three RCP sce-
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Figure 2. Results of evaluation scores from 23 GCMs by rank scoring method.

narios increased by 1.23, 1.35, and 1.55 ◦C, compared with
the baseline period, which was more prominent than the in-
crease in the mean annual temperature. The minimum tem-
perature in the three RCP scenarios increased by 1.08, 1.18,
and 1.68 ◦C compared with the baseline period.

3.3 Assessment of water productivity under climate
change

3.3.1 Crop growth modeling

The SWAP-EPIC model driven by future climate scenario
data was used to simulate corn growth in the scenario of
RCP2.6, RCP4.5, and RCP8.5, and to obtain the yield and
crop water consumption (CWC) ETa of corn in Gaotai and
Ganzhou. The SWAT-EPIC model parameters were based
in the calibration and validation results of Jiang (2013) and
Jiang et al. (2015) for oasis in the middle reaches of the
HRB. The mean annual yield and CWC of corn growing
in Gaotai in the three future climate scenarios varied from
the 2012 to 2015 data (Fig. 3). The mean annual corn yield
in all three future climate scenarios had a decreasing trend,
and the amount of decrease ranked from high to low as
P2.6 (−5.22 %) > RCP4.5 (−2.44 %) > RCP8.5 (−1.66 %).
The mean annual CWC was also had a decreasing trend, and

the decrease was above 12 % for all scenarios, with the high-
est decrease being 14.73 % in RCP4.5.

Figure 4 shows the interannual variation trend of future
yield and the CWC of corn in Gaotai. In future climate sce-
narios, the corn yield in Gaotai featured a wavelike rise, and
there were no significant differences between the three sce-
narios from an interannual perspective. In 2021, there was
a projected dramatic increase in the yield and a projected
large decrease in 2036. The CWC of corn in the three future
climate scenarios did not increase or decrease significantly,
showing fluctuating changes.

Figure 5 shows inter-decadal variation and the mean an-
nual yield and CWC of corn growing in Gaotai in the three
future climate scenarios compared to 2012 to 2015 data. The
mean annual corn yield in the RCP2.6 scenario had a de-
creasing trend. However, in RCP4.5 and RCP8.5, the corn
yield increased by 2.51 and 2.3 %, respectively. The mean
annual CWC had a decreasing trend in all three future cli-
mate scenarios, and the amount of decrease was similar,
ranking, from high to low, as RCP4.5 (−16.27 %) > RCP2.6
(−15.67 %) > RCP8.5 (−15.32 %).

Figure 6 shows the interannual variation trend of the yield
and CWC of corn in Ganzhou. The corn yield in Ganzhou
had a fluctuating rise in the future; there were no significant
differences between the three scenarios from an interannual

proc-iahs.net/379/393/2018/ Proc. IAHS, 379, 393–402, 2018
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Figure 3. Changes of corn yield and ETa in the Gaotai area under RCP scenarios.
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Figure 4. Temporal variations of corn yield and ETa in the Gaotai area under RCP scenarios. 
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Figure 5. Changes of corn yield and ETa in the Ganzhou area under RCP scenarios.

perspective, but the overall increase was greater than that of
Gaotai. In 2018 and 2021, the yield was predicted to be rela-
tively high, but it would decrease greatly in 2038. The CWC
in the three future climate scenarios would generally fluctu-
ate. Compared with the CWC from 2012 to 2015, the CWC
in the future would first decrease and gradually show a fluctu-
ating increase from 2022 on. However, the final CWC would
remain lower than that from 2012 to 2015.

3.3.2 Water productivity evaluation

Water productivity (WP) refers to the yield or output value
obtained from per unit water resources on specific crops
and under specific cultivation conditions. With the unit be-

ing kg m−3, water productivity is mainly used to reflect the
water management level or evaluate the farmland water use
efficiency in an irrigated area. It can be calculated by the fol-
lowing equation:

WP=
Y

ETa

, (3)

where Y is crop grain yield (kg ha−1), ETa is the CWC dur-
ing the crop growth period (crop transpiration + inter-plant
evaporation) (mm).

The inter-decadal water productivity of Gaotai and
Ganzhou is shown in Fig. 7. As the RCP increased, the mean
temperature, maximum temperature, and minimum tempera-
ture increased, the wind speed and precipitation decreased,
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Figure 6. Temporal variations of corn yield and ETa in the Ganzhou area under RCP scenarios.
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Figure 7. Decadal changes of corn water productivity in the middle agricultural region of the HRB under RCP scenarios.

and the water productivity of the two locations increased.
The inter-decadal water productivity in all the three future
climate scenarios is higher than in the historical simulation
series (2012–2015). Among them, the increase of the water
productivity in the RCP4.5 scenario was the greatest. Water
productivity became higher over time, which was associated
with the temperature rise. In addition, increase in the maxi-
mum temperature was clearly greater than that of the mini-
mum temperature, which led to an increase in accumulated
temperature and promoted crop growth.

Figure 8 shows the variation trend of the annual wa-
ter productivity in both Gaotai and Ganzhou. In the three
future climate scenarios, the water productivity had an
upward trend and the increase ranked, high to low, as
RCP4.5 > RCP8.5 > RCP2.6. There was a decrease in the wa-
ter productivity of both Gaotai and Ganzhou in 2038, and as
analyzed above, the temperature, yield and CWC decreased
in the same year. Therefore, the water productivity also de-
creased in this year. The overall growth trend in Ganzhou was
higher than that in Gaotai, and the two places were similar to
each other in the fluctuation trend.

4 Conclusions

The Heihe River Basin was selected as the typical area rep-
resenting the agricultural oasis of the Hexi Corridor and the
Silk Road Economic Belt in this study. Based on observed
data at 17 meteorological stations, 23 GCMs and ERA-40
reanalysis data, the SDSM was employed to complete a
downscaling projection of climate change during the baseline
period and three future climate scenarios, namely RCP2.6,
RCP4.5 and RCP8.5. The SWAP-EPIC model was combined
to simulate corn growth in the Gaotai and Ganzhou areas lo-
cated in the middle agricultural region of the HRB to ob-
tain crop yields and CWC data under future climate change
scenarios, investigating the responses of water productivity.
Conclusions are as follows:

1. The SDSM carried out downscaling on the multi-GCM
data and generated data on the three future climate sce-
narios. Precipitation in the future scenarios had decreas-
ing trends compared to the baseline period, and the pre-
cipitation decrease in RCP4.5 was greater than that in
RCP2.6 and RCP8.5. The mean, maximum, and min-
imum temperatures all had upward trends, and as the
RCP increased, the temperature rise also increased with
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Figure 8. Temporal variations of corn water productivity in the middle agricultural region of the HRB under RCP scenarios.

RCP8.5 > RCP4.5 > RCP2.6. The increase in the maxi-
mum temperature was greater than that in the mean tem-
perature and minimum temperature.

2. The SWAP-EPIC model was used to simulate the corn
growth in Gaotai and Ganzhou, and explore the varia-
tion patterns of the yield, CWC and water productiv-
ity under different climate change scenarios. The wa-
ter productivity of the two locations showed an upward
trend in the next three decades, and the water produc-
tivity in both Gaotai and Ganzhou increased the great-
est in the RCP4.5, exceeding 2 kg m−3 in most of the
years. Therefore, in Gaotai and Ganzhou, located in the
middle oasis of the Heihe River Basin, the water pro-
ductivity of corn gradually increased as the temperature
increased and precipitation and wind speed decreased.

Located in the inland of Northwest China, the Heihe River
Basin has an arid climate, so agricultural production mainly
depends on timely irrigation. Therefore, the decreased pre-
cipitation had little effect on crop growth, while temperature
rise caused an increase of accumulated temperature, which
in turn promoted the growth of corn and increased corn yield
and the increase of water productivity.
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