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Abstract. Socio-hydrological modelling studies that have been published so far show that dynamic coupled
human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems.
So far these models are mostly generic and have not been developed and calibrated to represent specific case
studies. We believe that applying and calibrating these type of models to real world case studies can help us to
further develop our understanding about the phenomena that occur in these systems. In this paper we propose a
method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial
case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After
simulating hypothetical time series with a given combination of parameters, we sample few data points for our
variables and try to estimate the parameters given these data points using Bayesian Inference. The results show
that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values

for our socio-hydrological flood model.

1 Introduction

Socio-hydrology aims to study the long term feedbacks be-
tween humans and hydrology and tries to explain the phe-
nomena that occur as a result of these feedbacks (Sivapalan
and Bloschl, 2015; Sivapalan et al., 2012). So far, socio-
hydrological flood models are mostly based on concepts de-
rived from personal experience/observation of how the sys-
tem works (Di Baldassarre et al., 2013, 2015, 2017; Grames
et al.,, 2016, Grelot and Barreteau, 2012; Viglione et al.,
2014). Most of them are general models that are not devel-
oped to reproduce and evaluate the dynamics of a specific
case study and have not been compared to data. An excep-
tion to this is the work of Ciullo et al. (2017): they made a
qualitative comparison between the model results of Di Bal-
dassarre et al. (2015) and the human-flood system of the city
of Rome and Bangladesh using data on population density,
flood losses and levee heights. Chen et al. (2016) developed
a socio-hydrological model to reflect the human-flood dy-
namics in the Kissimmee River Basin, Florida. Using flood

series and data about wetland area they made a qualitative
assessment of the model’s performance. While the socio-
hydrological models and studies so far show that these mod-
els can yield valuable insights into human-flood dynamics,
there is a lack of application to real world systems and none
of the models so far have been calibrated to represent a spe-
cific case study. It is therefore of interest to assess whether
calibrating socio-hydrological models is indeed feasible and
understanding what are the data needed and their amount.
Here we develop a socio-hydrological model and explore
whether we are able to estimate the parameter values of this
model using Bayesian Inference (Gelman et al., 2014) if we
would have data available.

2 Methods

2.1 Model structure

History has shown that repeated flood events may result in
lower damages if flood events happen again, because peo-
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Figure 1. Generated dynamics of system variables, sampled data points and estimated time series. The generated dynamics of the system
variables is represented in blue. Sampled data points are shown in black, with their 90 % uncertainty bounds. Estimated time series are plotted
in red, with the mean as a solid line and the 90 % credible bounds as dotted lines.

ple become aware of the flood risk and adapt. We want our
model to capture these interactions between floods, aware-
ness and preparedness. We model these interactions with the
following variables: Floods (W), Losses (L), Relative Losses
(R), Settlement Density (D), Awareness (A) and Prepared-
ness (P). The behavior of these variables over time is de-
scribed with the system of differential equations in Eq. (1).

L=RD (1a)
w
Rmax — Brexp (_aR (Pmax — P) ) s
R= Winax (1b)
if W>H
0, otherwise
b U A)YD|1 D (1c)
- = —o —_ C
dr b Dinax
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d max

dp = da 1 P S(R) P (le)
a P Prnax s ¢
S(R) =tanh (1000R) (1f)

High water levels (W) (here called floods) and the protection
level (H) are external variables. For illustrative purposes, we
use time series of the gauge at Dresden, Germany. If the wa-
ter level (W) is higher than the protection level (H), this re-
sults in a relative loss (R) as given in Eq. (1b). R increases
exponentially to a maximum of one for a maximum flood.
Together with the settlement density (D), this results in an ac-
tual loss (L), according to Eq. (1a). The actual loss is higher
if the relative loss is higher or if the settlement density (and
thus the exposure) is higher.
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Table 1. Model parameter description and units (n, = number of households, 7, = number of precautionary measures)

Parameter  Definition Unit

ap Risk taking attitude [1/(nn/np)]

an Scaredness [1/ (€/€)]

LA Forgetfulness [1/¢]

wp Decay rate of precautionary measures  [1/1]

ap Activeness [(nm/nm)t/(nn /np)]
oR Effectiveness of preparedness [1/(nm/nm)]

According to the literature, awareness (Eq. 1d) increases
when households experience damage (Bradford et al., 2012;
Bubeck et al., 2013; Osberghaus, 2015; Owusu et al., 2015;
Poussin et al., 2014; Wachinger et al., 2013), and decreases
exponentially over time with rate 4 as households forget
(ICPR, 2002; Kreibich et al., 2011). We assume the increase
in awareness depends on the size of the awareness as well, i.e.
if awareness is high already it will increase less than when it
is close to zero.

An increase in awareness may result in an increase in
the uptake of precautionary measures and thus preparedness.
How big this increase in preparedness is depends on other
factors as well, like coping appraisal (Bubeck et al., 2012),
maladaptive coping responses (Bubeck et al., 2013) or worry
(Miceli et al., 2008; Raaijmakers et al., 2008). The fact that
not all households that are aware of the risk take precaution-
ary measures is represented by the parameter « p, which de-
termines how much of an increase in awareness results in
an uptake of precautionary measures and thus an increase
in preparedness. As described by Eq. (le), preparedness in-
creases after a flood event with an amount relative to the
change in awareness and depending on how high the pre-
paredness was before the flood event (if households have al-
ready implemented many measures, there is less room for
an increase in preparedness than when they have not im-
plemented any measures). Preparedness only increases when
damage occurs, i.e. when the relative loss is higher than zero.
We approximate this step function with a tangens hyperboli-
cus (Eq. 1f). Like the awareness, preparedness decreases ex-
ponentially over time with a rate u p because households for-
get and measures deteriorate.

According to the literature, implementing precautionary
measures can greatly reduce the losses because of a flood
(Kreibich et al., 2015; Poussin et al., 2015). So if prepared-
ness is higher the relative losses will be lower. How much
lower the relative losses will be depends on the parameter
o (Eq. 1b). As explained the losses depend on the rela-
tive losses and on the settlement density. The settlement den-
sity grows with a general growth rate U, but if awareness is
higher this will reduce the growth rate and thus settlement
density will grow slower or may even decline as described in
Eq. (1c).
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Table 2. Parameter values. Real values used to generate our data
points and the mean and standard deviation of the posterior distri-
bution estimated with Bayesian inference

Parameter Real value  Estimated

ap 3 mean = 3.30, sd = 0.64
ap 10 mean = 9.80, sd = 0.07
nA 0.1  mean =0.11,sd =0.02
uwp 0.05 mean = 0.05, sd = 0.01
ap 1 mean = 1.00, sd = 0.09
oR 0.2  mean = 0.23, sd = 0.07
Dg 0.2  mean = 0.26, sd = 0.07
Ao 0.4 mean = 0.67, sd = 0.21
Py 0.2 mean = 0.34,sd =0.22

2.2 Bayesian inference

We want to estimate the values of the model parameters from
data. The variables are scaled between zero and one. We as-
sume Bg is one and try to estimate the values of the six pa-
rameters that do not have a value of one. These parameters
are described in Table 1. In addition we need to estimate the
starting values of the variables settlement density, awareness
and preparedness, because we describe the evolution of these
variables with a differential equation.

Since socio-hydrology studies both the human and the hy-
drological system, we have to deal with various types of data
with different uncertainties. Bayesian inference allows us to
include all of these different types of data. Bayes’ Theorem
(Eq. 2) tells us that the posterior distribution of our parame-
ters depends on the likelihood of the data and our prior esti-
mation of the parameter distributions:

»(Oly) = r(ylo)p©) @)
Jp(y16)p(6)do
p(@|y) is the estimated posterior distribution of our parame-
ter values. p(@) represents our prior belief about the distribu-
tion of the parameters. If we have any information about our
parameters beforehand we can specify an informative dis-
tribution, if we do not have any information we use non-
informative distributions, which is what we will do here.
p(y]0) gives us the likelihood of our data given the parameter
values. Here we can incorporate our data and specify the un-
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Figure 2. Prior (black) and posterior (red) distributions of the parameters. The “real” parameters to be estimated are represented by the blue

vertical lines (see Table 2 for their values).

certainties. In most cases it is not possible to compute the in-
tegral in the denominator, therefore we approximate this us-
ing Markov chain Monte-Carlo (MCMC) methods (Gelman
et al., 2014). In this case we use the software Stan (Carpenter
et al., 2017) to perform the estimation. Stan uses Hamilto-
nian Monte Carlo sampling, which uses the gradient of the
log probability to speed up convergence and parameter ex-
ploration (Stan Development Team, 2017).

3 Results

We assume that the parameters have the values given in Ta-
ble 2 and simulate time series of all state variables (blue lines
in Fig. 1). The question we ask is: if we could observe, with
uncertainty, the variables only in a limited number of time
points, would we be able to infer the temporal evolution of
the variables or, which is analogous, would we be able to es-
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timate the parameters of the model? To test whether this is
possible, we sample some data points for each of the vari-
ables: Settlement Density (D), Loss (L = R - D), Awareness
(A) and Preparedness (P). These data points and their uncer-
tainties are plotted in black in Fig. 1. Using these data points
and uninformative priors for our parameters, we perform the
Bayesian Inference using MCMC. Figure 1 shows the mean
(solid red line) and 90 % credible bounds (dashed red lines)
of the time series as estimated with the inference.

The top graph gives normalized discharges and protection
level time series at the annual time scales. If the discharge
is higher than the protection level this results in a loss as
shown in the third graph. The size of this loss depends on the
relative loss and the settlement density. If losses occur, this
causes an increase in awareness (second graph from the bot-
tom) and subsequently an increase in preparedness (bottom
graph). Both the awareness and preparedness decrease grad-
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ually over time when no flood occurs. The awareness does
slightly influence the growth of the settlement density since
every time a flood occurs the settlement density grows more
slowly in the following years.

The credible bounds of the simulation are quite narrow,
which means that the posterior distributions of our parameter
values are narrow as well and that we are confident that we
almost got the parameter values right. Figure 2 shows the real
parameter values (used to generate our data points) in blue,
the prior distributions that we used for the Bayesian inference
in black and the posterior distributions estimated with the in-
ference in red. The posterior mean estimates are very close
to the real parameter values (see also Table 2). The estimates
of the initial values are bit further off from the real values,
which is not surprising given that we did not pick any data
points at the start of our time series and therefore we do not
have any information available to estimate the variables at the
start. We used flat uninformative prior distributions and we
are able to determine the posterior distributions quite well.
The posterior distributions are not much influenced by the
prior distributions and mainly depend on the data.

4 Conclusions

We have conducted an artificial experiment where a Socio-
Hydrological model is assumed whose “true parameters” are
known to us, since we impose them, and observations are
sampled from variables generated with the model. The aim
of this paper is to assess whether the model can be calibrated
to these observed data. This is not trivial because the model
is highly nonlinear and it is not clear what amount of data
is needed for calibration and, more importantly, whether the
amount we can imagine to find in a real world case study can
be enough. We demonstrate that, if the assumptions underly-
ing the model are valid, we are able to estimate quite accu-
rately the parameter values from relatively few data, which
could be available in real case studies, using Bayesian In-
ference. Other estimation techniques, such as those used in
rainfall-runoff modelling, could be used instead but the fact
that Bayesian Inference is a flexible tool that can incorporate
different types of information makes it ideal for the applica-
tion to socio-hydrological models, where data are highly un-
certain and prior information may be available to constrain
model parameters.

The next step will be to gather data for a specific real
world case study, develop and apply a model to it. This will
pose a bigger challenge than it is in the case presented here,
since the model will not represent correctly and fully the real
world. Also, another challenge will be to map the informa-
tion gathered on variables such as awareness and prepared-
ness to the zero-to-one space adopted here. However it is
promising to know that, based on what we show in this pa-
per, if we can rely on the assumptions of the model so that
the uncertainty is mainly due to not knowing its parameters,

proc-iahs.net/379/193/2018/

we can actually calibrate a socio-hydrological flood model to
the few data available.

Data availability. The analyses in the paper are based on gener-
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river Elbe at Dresden, which is the result of the research project “In-
tegration von historischen und hydraulisch/hydrologischen Analy-
sen zur Verbesserung der regionalen Gefidhrdungsabschétzung und
zur Erhohung des Hochwasserbewusstseins 2005-2007” (BMBF-
Projekt, 2007) (Uwe Griinewald and Sabine Schiimberg, Hydrol-
ogy and Water Resource Management, Brandenburg University of
Technology BTU Cottbus, Germany).

Competing interests. The authors declare that they have no con-
flict of interest.

Special issue statement. This article is part of the special issue
“Innovative water resources management — understanding and bal-
ancing interactions between humankind and nature”. It is a result of
the 8th International Water Resources Management Conference of
ICWRS, Beijing, China, 13-15 June 2018.

Acknowledgements. We would like to acknowledge funding
from the Marie Sklodowska-Curie Innovative Training Network
“A Large-Scale Systems Approach to Flood Risk Assessment
and Management — SYSTEM-RISK” (Grant Agreement number:
676027) and the project “SozioHydroKopplung” funded by the
German Bundesanstalt fiir Gewisserkunde. We would like to thank
Hongrui Wang, Dingzhi Peng and one anonymous reviewer for
their useful comments to the original version of the paper.

Edited by: Dingzhi Peng
Reviewed by: Hongrui Wang and one anonymous referee

References

BMBF-Projekt: “Integration von historischen und hydrolo-
gisch/hydraulischen Analysen zur Verbesserung der re-
gionalen Gefidhrdungsabschitzung und zur Erhohung des
Hochwasserbewusstseins”, BTU Cottbus, Cottbus, available
at: http://www-docs.tu-cottbus.de/hydrologie/public/files/
Schlussbericht BMBF0330686.pdf, 2007.

Bradford, R. A., O’Sullivan, J. J., van der Craats, I. M., Kry-
wkow, J., Rotko, P., Aaltonen, J., Bonaiuto, M., De Dominicis,
S., Waylen, K., and Schelfaut, K.: Risk perception — issues for
flood management in Europe, Nat. Hazards Earth Syst. Sci., 12,
2299-2309, https://doi.org/10.5194/nhess-12-2299-2012, 2012.

Bubeck, P., Botzen, W. J. W., and Aerts, J. C. J. H.: A review of
risk perceptions and other factors that influence flood mitigation
behavior, Risk Anal., 32, 1481-1495, 2012.

Bubeck, P., Botzen, W. J. W., Kreibich, H., and Aerts, J.: Detailed
insights into the influence of flood-coping appraisals on mitiga-
tion behaviour, Global Environ. Chang., 23, 1327-1338, 2013.

Proc. IAHS, 379, 193-198, 2018



http://www-docs.tu-cottbus.de/hydrologie/public/files/Schlussbericht_BMBF0330686.pdf
http://www-docs.tu-cottbus.de/hydrologie/public/files/Schlussbericht_BMBF0330686.pdf
https://doi.org/10.5194/nhess-12-2299-2012

198 M. H. Barendrecht et al.: Estimating parameter values of a socio-hydrological flood model

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich,
B., Betancourt, M., and Riddell, A.: Stan: A Probabilis-
tic Programming Language, J. Stat. Softw., 76, 1-32,
https://doi.org/10.18637/jss.v076.101, 2017.

Chen, X., Wang, D., Tian, F., and Sivapalan, M.: From
channelization to restoration: Sociohydrologic modeling
with changing community preferences in the Kissimmee
River Basin, Florida, Water Resour. Res., 52, 1227-1244,
https://doi.org/10.1002/2015WR018194, 2016.

Ciullo, A., Viglione, A., Castellarin, A., Crisci, M., and Di
Baldassarre, G.: Socio-hydrological modelling of flood-
risk dynamics: comparing the resilience of green and
technological systems, Hydrolog. Sci. J., 62, 880-891,
https://doi.org/10.1080/02626667.2016.1273527, 2017.

Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione,
A.: Drought and flood in the Anthropocene: feedback mecha-
nisms in reservoir operation, Earth Syst. Dynam., 8, 225-233,
https://doi.org/10.5194/esd-8-225-2017, 2017.

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J.
L., and Bloschl, G.: Socio-hydrology: conceptualising human-
flood interactions, Hydrol. Earth Syst. Sci., 17, 3295-3303,
https://doi.org/10.5194/hess-17-3295-2013, 2013.

Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K.,
Brandimarte, L., and Bloschl, G.: Debates — Perspectives
on socio-hydrology: Capturing feedbacks between physical
and social processes, Water Resour. Res., 51, 4770-4781,
https://doi.org/10.1002/2014WR016416, 2015.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
and Rubin, D. B.: Bayesian data analysis (Vol. 2), CRC press
Boca Raton, FL, 2014.

Grames, J., Prskawetz, A., Grass, D., Viglione, A., and
Bloschl, G.: Modeling the interaction between flooding
events and economic growth, Ecol. Econ., 129, 193-209,
https://doi.org/10.1016/j.ecolecon.2016.06.014, 2016.

Grelot, F. and Barreteau, O.: Simulation of Resilience of an In-
surance System to Flood Risk, International Environmental
Modelling and Software Society (iIEMSs) 2012 International
Congress on Environmental Modelling and Software Managing
Resources of a Limited Planet: Pathways and Visions under Un-
certainty, Sixth Biennial Meeting, Leipzig, Germany, 2012.

ICPR (International Commission for the Protection of the Rhine):
Non structural flood plain management — measures and their ef-
fectiveness, ICPR, Koblenz, 2002.

Kreibich, H., Seifert, 1., Thieken, A.H., Lindquist, E., Wagner, K.,
and Merz, B.: Recent changes in flood preparedness of private
households and businesses in Germany, Reg. Environ. Change,
11, 59-71, https://doi.org/10.1007/s10113-010-0119-3, 2011.

Proc. IAHS, 379, 193198, 2018

Kreibich, H., Bubeck, P., Van Vliet, M., and De Moel, H.: A re-
view of damage-reducing measures to manage fluvial flood risks
in a changing climate, Mitigation and Adaptation Strategies for
Global Change, 20, 967-989, 2015.

Miceli, R., Sotgiu, 1., and Settanni, M.: Disaster preparedness and
perception of flood risk: A study in an alpine valley in Italy, J.
Environ. Psychol., 28, 164-173, 2008.

Osberghaus, D.: The determinants of private flood mitigation mea-
sures in Germany — Evidence from a nationwide survey, Ecol.
Econ., 110, 36-50, 2015.

Owusu, S., Wright, G., and Arthur, S.: Public attitudes towards
flooding and property-level flood protection measures, Nat. Haz-
ards, 77, 1963-1978, 2015.

Poussin, J. K., Botzen, W. J. W., and Aerts, J. C. J. H.: Factors of
influence on flood damage mitigation behaviour by households,
Environ. Sci. Policy, 40, 69-77, 2014.

Poussin, J. K., Botzen, W. J. W., and Aerts, J. C. J. H. Effectiveness
of flood damage mitigation measures: Empirical evidence from
French flood disasters, Global Environmental Change, 31, 74—
84, 2015.

Raaijmakers, R., Krywkow, J., and van der Veen, A.: Flood risk
perceptions and spatial multi-criteria analysis: an exploratory
research for hazard mitigation, Natural Hazards, 46, 307-322,
2008.

Sivapalan, M. and Bloschl, G.: Time scale interactions and the co-
evolution of humans and water, Water Resour. Res., 51, 6988—
7022, https://doi.org/10.1002/2015WR017896, 2015.

Sivapalan, M., Savenije, H. H. G., and Bloschl, G.: Socio-
hydrology: A new science of people and water, Hydrol. Process.,
26, 1270-1276, https://doi.org/10.1002/hyp.8426, 2012.

Stan Development Team: Stan Modeling Language Users Guide
and Reference Manual, Version 2.17.0, http://mc-stan.org, 2017.

Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G.,
Salinas, J. L., and Bloeschl, G.: Insights from socio-hydrology
modelling on dealing with flood risk — Roles of collective
memory, risk-taking attitude and trust, J. Hydrol., 518, 71-82,
https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.

Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The risk per-
ception paradox — implications for governance and communica-
tion of natural hazards, Risk Analysis, 33, 1049-1065, 2013.

proc-iahs.net/379/193/2018/


https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1002/2015WR018194
https://doi.org/10.1080/02626667.2016.1273527
https://doi.org/10.5194/esd-8-225-2017
https://doi.org/10.5194/hess-17-3295-2013
https://doi.org/10.1002/2014WR016416
https://doi.org/10.1016/j.ecolecon.2016.06.014
https://doi.org/10.1007/s10113-010-0119-3
https://doi.org/10.1002/2015WR017896
https://doi.org/10.1002/hyp.8426
http://mc-stan.org
https://doi.org/10.1016/j.jhydrol.2014.01.018

	Abstract
	Introduction
	Methods
	Model structure
	Bayesian inference

	Results
	Conclusions
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

