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Abstract. The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot
topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral
Sea basin hydrological regime is its discontinuous nature – the only limited amount of papers takes into account
the complex runoff formation system entirely. Addressing this challenge we have developed a continuous predic-
tion system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and
data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water
assessment tool which utilizes the power of classical physically based and modern machine learning models both
for territories with complex water management system and strong water-related data scarcity. The source code
and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018).

1 Introduction

The Aral Sea and its basin are among the highly recogniz-
able examples of significant environmental changes which
took place in the Central Asia during the last decades (Izhit-
skiy et al., 2016; Micklin, 2007; Raskin et al., 1992; Zavialov
et al., 2003). Induced by river runoff exploitation across huge
irrigation systems the Aral Sea level has significantly de-
creased and run irreversible ecosystem and water balance
shifts (Zmijewski and Becker, 2014). Nowadays the Small
Aral Sea has a limited (by the Kokaral Dam) hydrological
connection with dying southern sea basins and tends to stay
a separate part under current social and political situation in
the region. It is extremely important to devote scientific at-
tention to this region as a real live example of the human-
induced impact on water balance and its response (Immerzeel
and Bierkens, 2012).

The main volume of the freshwater inflow into the Small
Aral Sea is formed on the Syr Darya river basin which is
among the largest and highly vulnerable river basins in the
Central Asia. There are thirteen large reservoirs and much lo-
cal water management related installations on the Syr Darya
river and its tributaries which utilize full freshwater poten-

tial for irrigational, industrial, recreational, and social needs.
This complex structure of water management system coupled
with the total absence of data describes its functioning is a
challenge for any approach directed to the accurate assess-
ment of the Small Aral Sea freshwater budget formation and
evolution across the basin (Lutz et al., 2012a; Raskin et al.,
1992; Sorg et al., 2014).

There are three main categories of scientific literature de-
voted to the identification of modern water balance shifts
in the Aral basin. The first group accumulates research di-
rected to large-scale heat and water flux changes assess-
ment based on remote sensing, climate modeling and re-
analysis data for a whole basin area (López et al., 2017;
Shi et al., 2014; Zmijewski and Becker, 2014). These in-
vestigations help us to identify patterns and key factors af-
fect long-term hydrological changes and its trends (geo-
graphical approach), but cannot be easily scaled for pro-
viding quantitative predictions. The second group focuses
attention mostly on the upstream Aral Sea basin area
(mountainous zone and Ferghana Valley) by the reason of
high-altitude glaciers and the biggest reservoirs presence
here. Pereira-Cardenal et al. (2011), Siegfried et al. (2012),
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Hagg et al. (2006, 2007), Gan et al. (2015) and Lutz et al.
(2012b) modeled runoff in glacierized catchments and its
contribution into underlying reservoirs inflow using concep-
tual and physically based models (NAM, HBV-ETH, OEZ,
SWAT, AralMountain). Apel et al. (2017) evaluated the skill
of simple statistical models for seasonal runoff forecast in
this region. Radchenko et al. (2017) examined historical
runoff for 18 river basins in Ferghana Valley using HBV-light
model and estimated projected changes in streamflow char-
acteristics according to the A1B climatic scenario for these
basins. For the extensive review of hydrological modeling
studies in glacierized catchments of Central Asia please re-
fer to Chen et al. (2017). The third (and the least) group of
papers being conducted on developing end-to-end hydrolog-
ical modeling system for the whole Small Aral Sea basin. A
simplified approach for assessing annual freshwater inflow
based on hypothetical and general circulation model based
scenarios of future climate temperature and precipitation has
been applied in Shibuo et al. (2007) and Jarsjö et al. (2012)
using Porflow model without any parameters calibration. The
most comprehensible routine for model-based assessment of
water balance components of Syr Darya river basin was pro-
posed in Lutz et al. (2012a) and utilizes coupling of con-
ceptual runoff formation model AralMountain (Lutz et al.,
2012b) with Water Evaluation And Planning model (WEAP)
which has been already implemented for the former Aral Sea
basin in 1989 (Raskin et al., 1992).

In presented work we have tried to combine best practices
in an existing scientific literature and modern advances in
the field of machine learning to develop continuous hybrid
hydrological model for investigating both runoff generation
processes using physically based models and runoff transfor-
mation through one of the most complex water management
systems in the world using machine learning algorithms and
models. With our research, we want to fill a modern gap in
developing a continuous runoff prediction system for the en-
tire Syr Darya river basin domain using a combination of
state-of-the-art modeling techniques. Our research does not
pretend to cover the problem of freshwater inflow predictions
in the Small Aral Sea in high details, but it is an attempt
to map the efficiency level of the runoff prediction system
which has been built only on open data sources.

2 Materials

2.1 Study area

The main part of the Small Aral Sea basin (Fig. 1) is occupied
by the Syr Darya river and its tributaries which contribute
around 40 km3 of freshwater inflow annually (Radchenko
et al., 2017). About 70 % of the runoff of the Syr Darya river
basin originates in the Kyrgyzstan mountain ranges and the
main contribution of this volume corresponds to Ferghana
Valley river basins (Belyaev, 1995; Radchenko et al., 2017).
In our research, we have selected 24 basins which run to

the Ferghana Valley as the main source of hydrological in-
sights and information about runoff generation in the fresh-
water formation zone of the Small Aral Sea (Fig. 1). These
basins are highly contrasting in geographical and hydrocli-
matic conditions, and cover a range of areas from 150 to
24 000 km2. For a detailed geographical description of Fer-
ghana Valley river basins please refer to Radchenko et al.
(2017).

2.2 Runoff and meteorological forcing data

Observed runoff data for selected basins were provided by
the Global Runoff Data Centre (GRDC; http://www.bafg.
de/GRDC/). Only for 2 basins of 24 there were daily ob-
served runoff time series, therefore in our work we used
only monthly observations for holding methodological con-
sistency. Runoff data availability is the main limit for de-
veloping and validation of our methodology by the reason
of the majority of available observations lie in the interval
from 1975 to 1985. For the modern studies related to con-
temporary water resources assessment on vast territories, it
is essential to use global gridded data products as the only
spatial and temporal continuous source. For this reason, all
models were driven by precipitation and temperature data
from the ERA-40 reanalysis (1957–2002, 0.5◦ spatial reso-
lution, http://apps.ecmwf.int/datasets/, Uppala et al., 2005).
Potential evapotranspiration is another required forcing vari-
able for all models and it was derived based on Oudin et al.
temperature-based equation (Oudin et al., 2005).

3 Methods and software

3.1 Hydrological models

The HBV (Hydrologiska Byråns Vattenbalansavdelning, in
Lindström et al., 1997), the GR4J (modele du Genie Ru-
ral a 4 parametres Journalier in Perrin et al., 2003), and
the SIMHYD (in Chiew et al., 2009) models were used in
this study according to its wide implementation for differ-
ent hydrological applications, flexibility, proven effective-
ness for runoff predictions in different geographical condi-
tions, and numerous successful applying for prediction in un-
gauged basins related studies (Beck et al., 2016; Oudin et al.,
2008; Reichl et al., 2009). All listed models have a typical
conceptual, bucket type with lumped parameters representa-
tion of runoff formation processes at basin scale with daily
timestep. GR4J and SIMHYD models have been updated
by adding Cema-Neige snow module (Valéry et al., 2014).
Models’ source code is freely available as a component of
LHMP tool (Lumped Hydrological Models Playground, http:
//github.com/hydrogo/LHMP, Ayzel, 2016). Models’ param-
eters were automatically calibrated by maximizing Nash-
Sutcliffe criteria (NSE, Nash and Sutcliffe, 1970) for a whole
period of observations using differential evolution algorithm
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Figure 1. The Small Aral Sea basin and selected river basins.

which finds the global minimum of a multivariate function
(http://docs.scipy.org, Storn and Price, 1997).

3.2 Machine learning models

For runoff modeling, we have used different machine
learning models starting from simple MLP (Multiple Lin-
ear Regression) and wide-based decision tree ensembles
of ETR (Extra Trees Regression) to the most compli-
cated depth-based tree ensembles of LGB (Light Gradi-
ent Boosting machine) and XGB (eXtreme Gradient Boost-
ing machine). MLP and RFR were implemented by us-
ing the Scikit-learn package (https://github.com/scikit-learn/
scikit-learn, Pedregosa et al., 2011), LGB was taken
from the LightGBM package (https://github.com/Microsoft/
LightGBM, Zhang et al., 2017), LGB was taken from XG-
boost package (https://github.com/dmlc/xgboost, Chen and
Guestrin, 2016). Machine learning model parameters tun-
ing requires a lot of expertise and experimentation and can-
not be resolved automatically because of high computa-
tional complexity (Snoek et al., 2012), therefore we had cal-
ibrated required parameters manually. For deriving predic-
tions in ensemble manner and approaching realism in the
model setting we have used leave-one-out cross-validation
technique for machine learning model performance assess-
ment (Ayzel, 2017; Hastie et al., 2001) – as a result, we eval-
uated model performance on every observational point inde-
pendently and produced ensemble realization according to
the amount of runoff observation we use. This setting pro-
vides us most comprehensive evaluation protocol for ma-
chine learning models and uncertainties related to models’
structures.

3.3 Feature engineering

Feature engineering is an essential part of any routine of ma-
chine learning model developing. The general idea of feature
engineering is to map already existed features of data to the
new representation (dimension). Two (among others) classi-
cal implementations of these techniques are extending data
with adding some features shifted in time (further referred
as LAGS) and shrinking data dimensionality with principal
component analysis (PCA) orthogonal transformation algo-
rithm (Hastie et al., 2001). We have tested performances of
our machine learning models with default input features, us-
ing LAGS and PCA separately and in a coupled setting, and
then select the best combination in term of runoff predictions
accuracy.

3.4 Workflow representation

The main idea of the presented work was to extract the value
using all freely available hydrological information available
for the Small Aral Sea basin. On the first stage of our research
workflow (Fig. 2) we have calibrated parameters of three hy-
drological models for 24 rivers run to Ferghana Valley. Dur-
ing the calibration stage, every model had been running at
daily temporal resolution then predicted runoff was aggre-
gated at monthly scale for consistency with observational
data for loss function calculation. On the second stage, we
have implemented common spatial proximity based model
parameters regionalization technique (Oudin et al., 2008) for
transferring optimal sets of model parameters to meteoro-
logical forcing grid cells centroids. On the third stage we
have run our models in a grid cell wise mode – for com-
puting runoff in every grid cell in previously delineated for-
mation zone (Fig. 1). As a result we have developed daily
gridded multi-model runoff database for the Small Aral Sea
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Figure 2. Runoff modeling workflow.

runoff formation zone which serves us as additional input
data source for runoff modeling using machine learning mod-
els: for the first gauge in our cascade on the Syr Darya river
– Kal – we have used both gridded meteorological and for-
mation zone runoff forcing as input, the same for the next
gauge in a cascade – Bekabad – but with added mean ensem-
ble modeled runoff realization from Kal. For the remaining
two gauges in a cascade (Tyumen Aryk and Kazalinsk), we
used only meteorological forcing and mean ensemble mod-
eled runoff realization from overlying gauge in a cascade.

4 Results and discussion

Model calibration results differ from model to model and
from different complexity of optimization algorithm. Only
one setting with HBV model and the most computation-
ally expensive realization of differential evolution algo-
rithm (number of iteration equals 25) provides positive val-
ues of NSE for every single basin (Fig. 3) and we have
decided to use only this set-up for further investigations.
Only five of selected basins have an NSE less than 0.45
– all of them (GRDC ids: 2916590, 2916660, 2916665,
2916670, 2916810) are located on a north exposition of Alay
range. These low efficiencies can be explained by errors in
GRDC observational runoff data or errors in basins’ meta-
data (wrong coordinates of outlets, basin areas) which are
quite hard to detect and check in the open literature and web
sources. Inter-comparison of obtained modeling results with
different studies (Lutz et al., 2012b; Pereira-Cardenal et al.,
2011; Radchenko et al., 2017; Siegfried et al., 2012) shows
high consistency among different approaches for modeling
water balance in the upper and mountainous part of the Syr
Darya river. Therefore we showed positive value of using
freely available data sources for water balance modeling in
the study area and tried to transfer this value to the grid-
ded runoff database of the Small Aral Sea (runoff) formation
zone using the most robust way of model parameters region-
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Figure 3. Boxplot of NSE for formation zone basins.

alization (Ayzel et al., 2017). Using developed gridded runoff
dataset for extracting runoff realization for 24 selected basins
in a semi-distributed manner shows good consistency with
realizations were produced by lumped model setting with op-
timal parameters.

There is no silver bullet in machine learning field in tak-
ing a priori decision about the best data preprocessing rou-
tine, the best model, the best validation technique, and the
best measure of failure (or success) of the proposed ap-
proach. In our research, we have tried to investigate the most
widespread solutions for tackling regression problems in ma-
chine learning using different state-of-the-art techniques. Re-
sults (Table 1) show a good efficiency of different machine
learning models to predict monthly runoff alongside a cas-
cade of gauges on the Syr Darya river. The high variance be-
tween models’ efficiencies from gauge to gauge is explained
by the various complexity of water management infrastruc-
ture and runoff formation complexes located between those
gauges. The worst results for Kal and Kazalinsk gauges and
the best efficiency for Tyumen Aryk gauge highly correspond
with a complexity of runoff formation/transformation pro-
cesses we want to map with our input data. The only inflow
from the upper Bekabad gauge is enough for robust mapping
to a runoff in Tyumen Aryk using simple linear regression
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(a) Syr Darya (Kal, GRDC id 2916202), NSE = 0.57
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(b) Syr Darya (Bekabad, GRDC id 2916203), NSE = 0.69
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(c) Syr Darya (Tyumen Aryk, GRDC id 2916200), NSE = 0.84
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(d) Syr Darya (Kazalinsk, GRDC id 2916201), NSE = 0.55
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Figure 4. Predictions of machine learning model ensembles.

Table 1. Runoff modeling results.

Gauge, GRDC id Machine learning models Feature engineering
efficiency (NSE)

MLR ETR LGB XGB

Kal (2916202) 0.56 0.56 0.58 LAGS, PCA
Bekabad (2916203) 0.67 0.66 0.73
Tyumen Aryk (2916200) 0.84
Kazalinsk (2916201) 0.56 0.54 LAGS

model because of little factors of water redistribution in this
local region. But we need more (in terms of quality, quan-
tity, and diversity) data to map more complicated relation-
ships for Kal and Kazalinsk because of high load of water
management system on runoff formation/transformation pro-
cesses. There is no clear pattern in models’ efficiency for spe-
cific gauges – models rank differently in different settings.
Nevertheless, we consider that the best solution in our case
is to use both linear MLR and non-linear XGB with differ-
ent feature engineering techniques for maximizing the spread
of possible solutions. Obtained results are in the upper part
of NSE range as in Gudmundsson and Seneviratne (2015)
who provided monthly runoff predictions for a set of Europe
river basins using Random Forest model and Watch Forc-
ing Data (http://www.eu-watch.org/data_availability) as in-

put forcing – this result underlines the crucial value of added
gridded runoff information to machine learning model inputs
which allows comparable model performance with European
basins.

Ensemble runoff predictions produced by machine learn-
ing models (Fig. 4) depict significant rate of model-related
uncertainties which highly correlates with model complex-
ity. This highlights a statement “the simpler – the better” re-
garding scientific model robustness issues, but we have to
mention that high prediction uncertainties are fair pay for the
ability of complex model map input features to relevant out-
put. It is also clear that obtained efficiency correlates with
overall complexity of observed system – for Kal gauge sta-
tion (Fig. 4a) wide range of overlying tributaries and water
management rules on them significantly contribute to com-
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plexity of processes we have to consider, the same is rel-
evant for the gauge station in Kazalinsk which affected by
many, often fuzzy and unclear water management practices
(Fig. 4d). This result is also confirmed by the complexity of
preprocessing routine – for the simplest cases (Bekabad and
Tyumen Aryk gauge stations) we do not need to implement
either PCA or LAGS for mapping features for a different di-
mension.

There is about 100 km from Kazalinsk gauge station to the
actual Syr Darya delta, and there are a lot of channels, ponds,
and other water management infrastructure units (e.g. the
Aklak water regulation station) which can affect total fresh-
water inflow in the Small Aral Sea basin, but for consistency
with previous studies (Lutz et al., 2012a; Raskin et al., 1992)
we consider the equality between observed runoff in Kaza-
linsk and freshwater inflow to the sea. Only a brief look on
the observed runoff time series in Kazalinsk (Fig. 4d) gives
any researcher a clear representation of high complexity of
runoff formation system behavior here – we can only de-
tect simple seasonal pattern with maximum water availabil-
ity during winter, but it is impossible to generalize remaining
runoff amplitude according to natural reasons. Nevertheless,
XGB and ETR models utilize this complexity well due to
their native algorithmic structures based on simple binarized
decision rules which try to mimic decision-making process
takes place in many real-life situations. Despite the clear at-
traction of observations to lower and upper boundaries of our
prediction interval which may identify unstable system be-
havior, there is an obvious correlation between observed and
modeled runoff.

Despite the limited observed runoff data availability for
this region (mainly for 1975–1985) which was the main
constraint in implementing comprehensive routines for pro-
posed methodology validation, obtained machine learning
model-based ensemble realizations of freshwater inflow into
the Small Aral Sea for the period of 1958–2002 (alongside
the forcing data availability) could form the basis for fur-
ther “Soviet-driven water management” scenario predictions
which help us better understand modern shifts in water re-
sources distribution in post-Soviet time.

5 Conclusions

The complex structure of the Small Aral Sea basin water
management system coupled with the total absence of data
describes its functioning is a challenge for any approach di-
rected to the accurate assessment of the freshwater budget
formation and evolution across the basin. Our work shows
the possibility to tackle these challenges by coupling hy-
drological models with the state-of-the-art machine learning
techniques. In detail, we have evaluated the significant value
of using physically based models for runoff predictions in un-
gauged upper part of the Syr Darya river for developing grid-
ded runoff database which can be used as an additional fea-

ture for machine learning model in a coupled setting. Results
show a positive skill and a high flexibility of the proposed
methodology, and in our perspective, it can be used widely
as a baseline approach for water balance research studies in
arid, ungauged areas, with complex water management sys-
tem and strong water-related data scarcity.

We understand that an equality between freshwater inflow
into the Small Aral Sea and observed runoff in Kazalinsk is
quite a rough assumption, and in the further studies, we will
try to assess real inflow by coupling simple seawater balance
model to our existing modeling system.

The code and data we have developed are totally open and
freely accessible. We hope that this supports reproducibility
of our research and provides easy access to the community
to test, criticize, or apply our findings.

Code and data availability. Raw data were downloaded from
ECMWF Public Datasets web interface (http://apps.ecmwf.int/
datasets/) and GRDC archive (http://www.bafg.de/GRDC/, via re-
quest). For using raw data you have to agree with correspond-
ing data policies from ECMWF and GRDC. You can find all
code and data (under MIT license) on our project Github page
(https://github.com/SMASHIproject/IWRM2018; Ayzel and Izhit-
skiy, 2017). There are no restrictions on use or distribution of our
software code and data.
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