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Abstract. We assessed environmental tracers in groundwater in two contrasting basins in Namibia; the Kuiseb
Basin, which is a predominantly dry area and the Cuvelai-Etosha Basin, which is prone to alternating floods and
droughts. We aimed to determine why the quality of groundwater was different in these two basins which occur
in an arid environment. We analysed groundwater and surface water for the stable isotope ratios of hydrogen
(δ2H) and oxygen (δ18O) by cavity ring-down spectroscopy and metals by inductively coupled plasma mass
spectrometry. The δ2H and δ18O of surface water in the Cuvelai-Etosha Basin plot on an evaporation trend
below the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The δ2H and δ18O of
some groundwater samples in the Cuvelai-Etosha Basin also plot on the evaporation trend, indicating recharge
by evaporated rain or evaporated surface water. In contrast, the δ2H and δ18O of groundwater samples in the
Kuiseb Basin plot mostly along the GMWL and the LMWL, indicating direct recharge from unevaporated rain
or unevaporated surface water. Fifty percent of groundwater samples in the Cuvelai-Etosha Basin was potable
(salinity < 1 ppt) compared to 79 % in the Kuiseb Basin. The high salinity in the groundwater of the Cuvelai-
Etosha Basin does not appear to be caused by evaporation of water (evapo-concentration) on surface prior to
groundwater recharge, but rather by the weathering of the Kalahari sediments. The low salinity in the Kuiseb
Basin derives from rapid recharge of groundwater by unevaporated rain and limited weathering of the crystalline
rocks. The order of abundance of cations in the Kuiseb Basin is Na > K > Ca > Mg vs. Na > Mg > Ca > K for
the Cuvelai-Etosha Basin. For metals in the Kuiseb Basin the order of abundance is Fe > Al > V > As > Zn vs.
Al > Fe > V> As > Zn for the Cuvelai-Etosha Basin. The relative abundance of cations and metals are attributed to
the differences in geology of the basins and the extent of water-rock interaction. Our results show that the quality
of groundwater in Cuvelai-Etosha Basin and Kuiseb Basin which vary in the extent of aridity, is controlled by
the extent of water-rock interaction at the surface and in the groundwater aquifer.
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1 Introduction

Water scarcity is one of the key limiting factors to sustainable
economic, industrial, social and environmental development.
In addition to scarcity, quality is a limiting factor for the sus-
tainable use of water for domestic, agricultural and industry
activities. For example, salinization which impairs the use of
water is a global problem. Moreover, salinization is more se-
vere in arid regions, where groundwater is the primary source
of water (IAEA, 2006).

In arid environments, precipitation and groundwater
recharge are extremely variable (Lewis and Walker, 2002).
The spatial variability of rain recharge along permanent and
intermittent river reaches and the variable water-rock inter-
action and groundwater mixing add complexity to investigat-
ing the origin and chemical evolution of groundwater. The
source(s) of water and the physical and chemical evolution
can be assessed by environmental tracers such as isotopes
and the types of chemical constituents (e.g., major and trace
elements) (Elliot, 2014). For example, the stable hydrogen
(δ2H) and oxygen (δ18O) isotopic composition of groundwa-
ter depends on that of precipitation. However, the climatic
conditions of the recharge environment and other local fac-
tors such as topography and the recharge process can cause
variation in the δ2H and δ18O which can be traced in ground-
water (Fritz et al., 1987; Clark and Fritz, 1997).

Namibia, located in an arid climate is becoming more
dependent on groundwater, especially during droughts. The
quality of the groundwater obtained from different ground-
water basins are highly variable. In general, groundwater
conditions are unfavourable due to limited availability, little
and unreliable recharge, low borehole yields, poor ground-
water quality and high risks of contamination (Christelis
and Struckmeier, 2011). It is therefore important to as-
sess groundwater in order to understand the factors that
cause variability in the quality. In this study, we use en-
vironmental tracers to assess the nature of recharge and
control of the quality of groundwater in the Kuiseb Basin
and Cuvelai-Etosha Basin. Potential evapotranspiration in
the Kuiseb Basin (785–1241 mm yr−1) and Cuvelai-Etosha
Basin (1880–2173 mm yr−1) are variable (Kaseke et al.,
2016). On an annual basis, the rainfall frequencies and inten-
sity vary significantly in the Kuiseb Basin (8–255 mm yr−1)
and Cuvelai-Etosha Basin (410–690 mm yr−1) (e.g., Kaseke
et al., 2016), which determines how rain is affected prior to
recharge of groundwater. In the Kuiseb Basin, there is lim-
ited surface ponding and runoff and the basin is predom-
inantly dry. In contrast, the Cuvelai-Etosha Basin is prone
to alternating floods and droughts and water ponds periodi-
cally on the surface and there is intermittent river flow during
flood periods. In the Kuiseb Basin, the quality of groundwa-
ter although portable is highly variable across the basin while
in the Cuvelai-Etosha Basin, groundwater quality is mostly
poor due to high salinity (Falke, 2008).

Figure 1. Map of Namibia showing the drainage basins (a) and
sampling station for the Cuvelai-Etosha Basin (b) and the Kuiseb
Basin (c).

2 Study Area

The Kuiseb Basin is located in the western part of Namibia
(Fig. 1) within the Namib Desert that stretches parallel to the
coast.

The Kuiseb Basin is underlain by a crystalline basement
of metamorphic sedimentary rocks (schist, quartzite or mar-
ble) with granitic intrusions (Miller, 1980; Schneider, 2004)
and sediments derived from these rocks. The Kuiseb Basin
is divided into an upper watershed which consists of high-
lands and commercial farms, a middle watershed which has
the Namib-Naukluft Park and small-scale farms (predomi-
nantly Topnaar communities) and a lower watershed close
to the coast encompassing the Walvis Bay and surround-
ing area. The Basin is drained by the Kuiseb River (Falke,
2008) and flows only after extremely heavy rains such as in
2011 (Mendelson et al., 2013; Gardiner et al., 2006). The
two aquifers in the Kuiseb Basin are located at Swartbank
and Rooibank in the lower portion of the basin. Groundwa-
ter in the Kuiseb Basin is recharged exclusively from rainfall
and runoff (Heyns and van Vuuren, 2009).

The Cuvelai-Etosha Basin is located in the north-central
part of Namibia. The Cuvelai-Etosha Basin is covered by
limestone and dolomite rocks and Kalahari sediments (un-
consolidated to semi-consolidated sands, gravels and silts
and calcrete) (Mendelson et al., 2013). Groundwater in the
basin is mainly abstracted from the Ohangwena Kalahari
Aquifer and discontinuous perched aquifers by means of
boreholes. Wells are used to supply water, especially to iso-
lated villages in the basin (Hamukoto et al., 2017). The
groundwater is saline except for the Tsumeb Karst.
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Figure 2. Plot of the stable oxygen isotopes (δ18O) vs. hydrogen
(δ2H) for water samples from the Cuvelai-Etosha Basin. GMWL
is the global meteoric water line and LMWL is the local meteoric
water line.

3 Methods

We collected and analysed water samples from groundwa-
ter and surface water in August to November of 2015 and in
August to September 2016. Fifty-six sampling points were
investigated; 25 sampling points from the Cuvelai-Etosha
Basin and 31 from the Kuiseb Basin.

Groundwater samples were collected from wells (hand
dug) and boreholes. The groundwater was pumped to the sur-
face for about 5 min to obtain water from the formation. Sur-
face water was sampled by the grab techniques along rivers
and dams. An artesian groundwater was sampled where it is-
sued to the surface. All water for cations and anions were col-
lected in polyethylene bottles and stored in cooler boxes. The
samples were filtered in the laboratory and refrigerated until
analyses. Water for stable isotopes were collected in glass
vials, kept cool in the field and refrigerated in the laboratory
until analyses.

Water temperature was measured onsite and the total dis-
solved solids (TDS), salinity and electrical conductivity were
measured either onsite using a portable HQ40d Dual In-
put Multi-parameter instrument or in the laboratory using
microelectrodes. Elemental concentrations were determined
by EPA Method 200.8 using an inductively coupled plasma
mass spectrometry (NexION 300D/350D) as described by
Pruszkowski and Bosnak (2014). Water analysed for δ2H and
δ18O was done by Cavity Ring-Down Spectrometry (Picarro
L2120-i) and are reported in the standard delta (δ) notation
in per mil (‰) relative to the VSMOW for the H and O iso-
topes.

Figure 3. Plot of the stable oxygen isotopes (δ18O) vs. hydrogen
(δ2H) for water samples from the Kuiseb Basin. GMWL is the
global meteoric water line and LMWL is the local meteoric water
line.

4 Results and Discussion

4.1 Isotope Ratios

The δ2H and δ18O from the Cuvelai-Etosha Basin and the
GMWL (Craig, 1961) and LMWL (δ2H= 7.2 δ18O+ 4.1;
Turewicz, 2013) are shown in Fig. 2.

The δ2H and δ18O of surface waters are enriched and plot
along a line below the GMWL and the LMWL, reflecting
high evaporation. Some groundwater samples lie along the
evaporation line and were subject to evaporation prior to
groundwater recharge (Prada et al., 2010).

The δ2H and δ18O from the Kuiseb Basin are shown
in Fig. 3. Also shown are the GMWL and the LMWL.
Compared to the Cuvelai-Etosha Basin, groundwater in the
Kuiseb Basin were more depleted and the δ2H and δ18O plot
mostly along the GMWL and the LMWL and at the lower
end of the evaporation line.

In principle, the δ2H and δ18O of groundwater should be
related to that of the local precipitation. The δ2H and δ18O of
groundwater co-vary, and on a global basis lie on the GMWL
or on the LMWL (e.g., Clark and Fritz, 1997). The GMWL
and the LMWL have been used in various studies as a conve-
nient reference for tracing the origin and evolution of water in
the hydrologic cycle (McGuire and McDonnel, 2007). When
the rain or surface water is subjected to evaporation, the co-
variation between the δ2H and δ18O deviate and lie below the
GMWL and LMWL; the extent of the deviation depends on
the aridity.

In a study of the distribution of δ2H and δ18O in rain across
Namibia, Kaseke et al. (2016) modelled heavier δ2H and
δ18O for rains in the Kuiseb Basin and more depleted val-
ues for rains in the Cuvelai-Etosha Basin. Yet, the δ2H and
δ18O in groundwater in the Cuvelai-Etosha Basin (Fig. 2) are
more enriched compared to those of groundwater the Kuiseb
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Figure 4. Plot of the stable oxygen isotopes (δ18O) vs. salinity for
water samples from the Cuvelai-Etosha Basin.

Basin (Fig. 3). The δ2H and δ18O in some groundwater in the
Cuvelai-Etosha Basin indicates extensive evaporation before
groundwater recharge. This is because rainwater is trapped
on the surface during flooding by muddy sediments deposited
by floods which reduce rapid infiltration (Mendelson et al.,
2013). This extensive evaporation of rain prior to ground-
water recharge appears to be limited in the Kuiseb Basin
(Fig. 3).

4.2 Groundwater Quality

The salinity of groundwater can be used as a proxy for the
ionic content (similar to the electrical conductivity and TDS)
and reflect processes that increase the solute content in water.
The salinity levels in groundwater in Cuvelai-Etosha Basin
are generally high (e.g., Fig. 4). About 50 % of the ground-
water have salinity lower than marginal (< 1 ‰) quality and
50 % have salinity that makes the groundwater brackish to
saline (1–10 ‰) quality.

The salinity levels measured for the Kuiseb Basin are
much lower (e.g., Fig. 5) compared to groundwater in the
Cuvelia-Etosha Basin. About 79 % of groundwater in the
Kuiseb have salinity lower than marginal (< 1 ‰) quality
and 21 % have salinity that makes the groundwater brack-
ish to saline (1–10 ‰) quality. The high salinity levels in
the Cuvelai-Etosha Basin may be due to the weathering of
abundant limestone, dolomite and calcrete (Msangi, 2014).
Also, high evaporation rates indicated by the enriched δ2H
and δ18O of some groundwater samples point to evapo-
concentration of solutes (Harbeck, 1955). Therefore, the
lower salinity levels in the Kuiseb Basin may thus reflect
limited weathering of the crystalline basement rocks and

Figure 5. Plot of the stable oxygen isotopes (δ18O) vs. salinity for
water samples from the Kuiseb Basin.

lower evapo-concentration indicated by more depleted δ2H
and δ18O in groundwater.

The effects of rainfall and evaporation vs. water-rock inter-
action on groundwater quality can be assessed by examining
the relationship between the δ18O (or δ2H) and solute con-
centrations (Winston and Criss, 2002) which in our case is
represented by salinity.

We anticipate that if evapo-concentration was responsi-
ble for the increase in solute concentrations in groundwa-
ter, there should be a positive relationship between the δ18O
and salinity. Our results show that in the groundwater in the
Cuvelai-Etosha Basin, high salinity does not necessarily cor-
respond with high δ18O (Fig. 4); Even groundwater with
moderate salinity in the Kuiseb Basin is not associated with
higher δ18O either. The poor relationship between salinity
and the δ18O is evidence that salinity is mostly due to water-
rock interaction or perhaps mixing of fresh groundwater with
more saline groundwater.

4.3 Elemental Composition

The order of the abundance of cations in the Kuiseb is
Na > K > Ca > Mg and Na > Mg > Ca > K for Cuvelai-Etosha
Basin. The marked differences in relative abundance and ab-
solute concentrations in the major cations is due to differ-
ences in basin geology and the extent of water-rock interac-
tion. The order of metal abundance is Fe > Al > V > As > Zn
for the Kuiseb Basin and Al > Fe > V> As > Zn for the
Cuvelai-Etosha Basin. We also attribute the major differ-
ences in metal composition between the two basins to ge-
ology.

We used Al and As compared to World Health Organi-
sation (WHO) and Water Resources Management Act (Re-
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Figure 6. (a) Aluminium and (b) Arsenic levels in the Cuvelai-
Etosha Basin and Kuiseb Basin. WHO→World Health Organisa-
tion and WRMA→Water Resources Management Act.

public of Namibia, 2013) standards to assess the differences
between the groundwater in the Cuvelai-Etosha Basin and
Kuiseb Basin (Fig. 6). Aluminium mobility and subsequent
transport within the environment is influenced by chemi-
cal speciation, hydrological flow paths, water-rock interac-
tions and the composition of the surface and aquifer mate-
rials (WHO, 1997). Arsenic in drinking water is a human
carcinogen (International Agency for Research on Cancer,
1988). Humans may be exposed to arsenic in water from
wells drilled into arsenic-rich ground strata or in water con-
taminated by industrial or agrochemical waste.

The results of our investigations show that Al is below
the WHO and WRMA standards (Fig. 6a). Arsenic also has
lower concentrations in groundwater compared to the WHO
and WRMA Standards. Nevertheless, As has higher concen-
trations in the Kuiseb Basin compared to the Cuvelai-Etosha
Basin. The fact that despite the marked differences in the
salinity, the As concentration is much higher in the Kuiseb
Basin indicates that water-rock interaction is the cause of
poor groundwater quality in the Cuvelai-Etosha Basin.

5 Concluding Remarks

The groundwater in the Cuvelai-Etosha Basin has poor water
quality evidenced by higher groundwater salinity classified
as brackish to saline than groundwater in the Kuiseb Basin.
There are higher levels of evaporation observed in more en-
riched stable isotopes of hydrogen and oxygen in ground-
water in the Cuvelai-Etosha Basin compared to the Kuiseb
Basin. The high salinity in groundwater in the Cuvelai-
Etosha waters is due to water-rock interaction and less by
evapo-concentration and mainly due to water rock interac-
tion in the Kuiseb Basin. The concentration of metals (e.g.,
As) did not exceed the World Health Organisation and Water
Resources Management Act standards which we attribute to
water-rock interaction and minimal anthropogenic activities.
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