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Abstract. Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion con-
trol but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends
on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Further-
more, field-scale data on these factors are often unavailable. This together with the complexity of hydrological
processes at field scale limits the application of classical distributed process modelling to highly-instrumented
experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for
modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for
a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated
with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected
during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the
semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well
(NSE = 0.55 to 0.66 and PBIAS=−1.3 to 6.1 %). The results show that combining fuzzy logic and process
based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water
dynamics in contour ridged fields.

1 Introduction

In-situ rainwater harvesting techniques are widely promoted
in arid and semi-arid regions of the world to mitigate against
the effects of dry spells that are frequently experienced in
these areas. Some of the in-situ rainwater harvesting tech-
niques that are implemented include planting basins which
are found in many parts of sub Saharan Africa (Mupangwa
et al., 2012), fanya juus in East African countries mainly
in Tanzania and Kenya (Makurira et al., 2010) and contour
ridges promoted in Tunisia, Ethiopia (Hengsdijk et al., 2005)
and Zimbabwe (Mhizha and Ndiritu, 2013). A contour ridge
is an excavated trench with the excavated soil heaped on the
down slope side unlike in a fanya juu where the soil is heaped
up slope (Fig. 1). The trench provides temporal storage for
storm water drained from the field upslope while the ridge
prevents the water from flowing downslope once the trench
is full.

In Zimbabwe contour ridges were initially adopted and
legally enforced for soil erosion control with designs adopted
from the United States of America (Elwel, 1981). The ini-
tial design comprised of a graded contour ridge constructed
along a slope of approximately 5 % to safely drain the water
away from a cultivated field. The forced implementation and
draining away of water in the dry semi-arid regions was not
appreciated by farmers (Hargman, 1996) who later changed
the design to dead level contours which are constructed at
zero gradient to prevent the storm water from draining away
and retain it in the field (Mupangwa et al., 2012). Studies by
Mupangwa et al. (2012) showed that soil moisture improve-
ments downslope of a dead level contour ridge were limited
to a distance of about 4 m. Mhizha and Ndiritu (2013) further
established that soil moisture improvement due to dead level
contour ridges was significant in loam soil and not in sandy
soil. These observations raise the need for modelling con-
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Figure 1. An illustration of the difference between a fanya juu (a)
and contour ridge (b).

tour ridged fields to establish water dynamics due to contour
ridges.

Modelling of contour ridges, fanya juus and other rain-
water harvesting technologies has previously been done us-
ing existing models developed for crop water management
or for groundwater movement. Hengsdijk et al. (2005) mod-
elled the effect of stone contour ridges (bunds) on crop yield
in Ethiopia using the WOFOST (World Food Studies) which
is a dynamic crop growth simulation model. The model as-
sumes that runoff reductions due to the stone bunds result in
increased infiltration and that this water is stored in the root
zone and becomes available to crops. The model does not
provide for runoff estimation but rather runoff is obtained
from site observations. This implies that uncertain estimates
of runoff need to be used on sites where there is no runoff
observation. Mwenge Kahinda et al. (2007) used the APSIM
(Agricultural Production Systems SIMulator) a crop yield es-
timation model to model the effect of supplemental irrigation
using water from rainwater harvesting systems of rock out-
crops and contour ridges in semi-arid areas of Zimbabwe.
The HYDRUS model which was developed for modelling
groundwater movement was used by Ruidisch et al. (2013)
to model water flow in a plastic mulched ridge cultivation
system in South Korea. The HYDRUS model does not have
provision for estimating runoff and is data intensive limiting
its application to experimental sites and not to sites where
data can be readily collected by farmers.

Rainwater harvesting modelling requires that results (or
models developed with data) from experimental sites are
transferred to non-experimental fields for practical applica-

Figure 2. The hydrological system of a contour ridged field.

tion. Parched-Thirst (Young et al., 2002), a process based
model was developed to solve such problems of transfer-
ability. Such models, whose availability is limited, have
a structure that captures the main processes driving rain-
water harvesting in order to remain meaningful. Parched-
Thirst estimates runoff as infiltration excess using the Green
Ampt equation and contour ridges are incorporated as de-
pression storages. Parched-Thirst was successfully used by
Magombeyi et al. (2012) to model crop yield from rainwa-
ter harvesting by planting basins known locally as Chololo
pits. It is suited for this type of rainwater harvesting technol-
ogy because the spacing between the ridges is small which
makes the concept of modifying runoff generation by depres-
sion storages justifiable. The spacing of contour ridges that is
around 20 m is large enough to warrant that runoff generated
in the cropped area be estimated separately. Parched-Thirst
does not explicitly estimate the runoff that flows into con-
tour ridges. Soil parameters for the estimation of infiltration
are determined using pedo-transfer functions where site data
does not exist. This limits its application in analysing contour
ridge water dynamics.

This paper presents a model that applies fuzzy logic to
estimate runoff in the cropped area and process based ap-
proaches for water partitioning in different locations of a con-
tour ridged field. The paper briefly describes the hydrologi-
cal conceptual framework of a contour ridged field which in-
forms the representative sub regions of a contour ridged field
where water partitioning takes place. These sub regions were
identified according to hydrological processes that are dom-
inant in each sub region similar to the way sub regions of a
representative elementary watershed are identified (Reggiani
et al., 1998). The main processes that are dominant in rain-
water harvesting by contour ridges are rainfall, interception,
runoff, infiltration and unsaturated soil moisture flow.

2 Materials and methods

2.1 Contour ridge design and data collection

The contour ridge layout used in the model was that of the
experimental fields set up in Zhulube (Mhizha and Ndiritu,
2013) which were spaced at 20 m and constructed at zero
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Table 1. Normalised cluster centre values after data clustering.

(m) (c0,m) (T ) (P i ) (θ ) (αN )

1 0.390 0.072 1.000 0.969 1.000
2 0.171 0.242 0.531 0.328 0.666
3 0.412 0.771 0.263 0.734 1.000
4 0.616 0.367 0.735 0.906 1.000
5 0.020 0.572 0.422 0.094 0.010

Key: m is cluster number; c0,m is runoff coefficient for cluster m;
T is rainfall duration; Pi is rainfall intensity; θ is soil moisture and
αN is soil type.

gradient to prevent water from leaving the field. Data was
obtained from a 3-year long field study of these experi-
mental sites (Mhizha, 2017) and from a previous study in
Masvingo (Mugabe et al., 2007). Both sites are located in
in the semi-arid areas of Zimbabwe where average rainfall
is 540 mm a−1. Data collected comprised of rainfall at daily
time step, soil moisture at weekly time step and soil hydraulic
parameters. The rainfall data was disaggregated into rainfall
intensity at hourly time step using the method developed by
Knoesen and Smithers (2009) which is a modification of the
rainfall disaggregation model proposed by Boughton (2000).
The soil hydraulic parameters collected and used in the mod-
elling are field capacity, the wilting point and infiltration ca-
pacity of the soil.

2.2 Modelling water partitioning in a contour ridged field

A contour ridged field comprising of the cropped area, two
contour ridges and the root zone (Fig. 2) was considered to be
a hydrological system where water partitioning takes place
in different components of the system. Water partitioning in
these three components of the system were considered for
modelling of contour ridge water dynamics. The first water
partitioning occurs when rainfall in the cropped area is turned
into infiltration, interception and runoff. The runoff gener-
ated in the cropped area accumulates in the contour ridge
channel where the second partitioning takes place. The ac-
cumulated runoff is turned into evaporation, infiltration and
if the channel becomes full discharge from the system. The
infiltrated water in both the cropped area and the channel add
to the soil moisture in the root zone. Within the root zone the
third water partitioning occurs. The soil moisture is turned
into evapotranspiration (soil evaporation and transpiration),
deep percolation and lateral flow to adjacent areas.

To model the water partitioning processes an approach
similar to the representative elementary watershed concept
(Regianni et al., 1998) was adopted. Each zone of the con-
tour ridge hydrological system where water partitioning oc-
curs was considered a hydrological subzone for which water
balance analysis could be done. Water mass flows across the
boundaries of each subzone were represented by the main hy-

drological processes taking place in the water mass balance
equations of that subzone.

The model operates on a daily time step which is the time
step that farmers can obtain rainfall and evaporation data for
their areas. For each time step the model start by executing
the rainfall partitioning in the cropped area. Once the model
completes water partitioning in the cropped area water par-
titioning in the contour ridge channel begins. The last water
partitioning in the model is carried out in the root zone.

2.2.1 Water balance for rainfall partitioning

The inputs in the water balance equation for rainfall parti-
tioning are rainfall, interception and runoff while infiltration
is taken as the residual of the water balance equation. At a
time step of one day the change in surface water storage for a
cropped area is assumed to be zero thus leaving infiltration as
the only unknown if interception and runoff can be indepen-
dently estimated. Interception reduces the amount of rainfall
that reaches the soil and become available to other hydrolog-
ical processes of runoff and infiltration. The model estimates
interception using a threshold-based approach and includes
all evaporative demands that feed moisture back into the at-
mosphere (de Groen and Savenije, 2006). In this approach,
when rainfall stops, interception storage is reduced by evap-
oration until there is no more storage or until the evapora-
tive demand for the day is achieved (Makurira et al., 2010).
Runoff is estimated using a fuzzy logic based method. This
method uses a set of linear regression models where rain-
fall intensity, rainfall duration, soil moisture (for the previ-
ous day) and soil type are input data and runoff is the out-
put. This method is described in more detail in Sect. 2.2. The
cropped area is divided into subplots to allow accumulation
of runoff downslope of a contour ridge. Thus effective pre-
cipitation at each subplot takes into account runoff from ups-
lope subplots. This ensures that downslope subplots generate
more runoff than upslope subplots. Finally the subplot ups-
lope of the contour ridge channel discharges water into the
channel thus making it input into the runoff partitioning sub-
zone. Equation (1) describes the water balance for rainfall
partitioning.
1ς

1t
= erz

+ eatm
+ eada

+ ecrc (1)

Where:1ς/1t is change in surface storage; eatm is exchange
with atmosphere (precipitation and interception or evapora-
tion); eada is net exchange of runoff with adjacent subplot
surface area; ecrc is exchange with the contour ridge channel
(runoff); and erz is exchange with the root zone (infiltration
into the subplot).

2.2.2 Water balance for runoff partitioning

The inputs for runoff partitioning are rainfall as data for the
site, runoff from the rainfall partitioning and evaporation. In-
filtration in the contour ridge channel is determined from the
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Table 2. Model consequent coefficients from shuffled evolution calibration.

Sub model Constant rain duration rain intensity soil moisture soil type
Number (c0,m) (c1,m) (c2,m) (c3,m) (c4,m)

1 0.042 0.107 0.163 0.129 0.089
2 −0.244 0.266 0.280 0.238 0.187
3 −0.021 0.181 0.181 0.136 0.144
4 0.027 0.270 0.059 0.208 0.271
5 −0.008 0.020 0.020 0.021 0.304

Table 3. Comparison of the model sensitivity to selected parame-
ters.

Model Parameter minimum CN maximum CN deltaCN

kpan −100.7 −1.6 99.1
soilevafactor −4.5 −1 3.5
reduction scale −64.1 37 101.1
pfraction −4.6 −0.8 3.8
fcapacity −50 5.5 55.5
wiltpoint −0.3 −0.1 0.2
infilcapacity 0 0 0

infiltration capacity of the soil and water availability in the
contour ridge channel. The water balance allows for spillage
if the net increase in volume leads to a value exceeding the
storage capacity of the contour ridge channel. Equation (2)
describes the runoff partitioning water balance.

1Č

1t
= ecrz

+ eatm
+ eca

+ ead (2)

Where: 1Č/1t is change in contour ridge channel storage;
ecrz is exchange with channel root zone (infiltration); eatm is
exchange with atmosphere (precipitation and evaporation);
eca is exchange with cropped area (run-on into contour ridge
channel); ead is exchange with adjacent area (spillage).

2.2.3 Water balance for soil moisture partitioning

Like in the rainfall partitioning the contour ridged field is di-
vided into subzones for soil moisture partitioning and mass
water balance is carried out separately in each subzone. Infil-
tration estimated from the rainfall partitioning and the runoff
partitioning enters the root zone as input for the soil moisture
partitioning zone.

Evapotranspiration includes both evaporation from soil
and transpiration by the crops and is estimated by consid-
ering evaporation and transpiration processes separately in
terms of the FAO-56 method as applied by Makurira et
al. (2010) and Allen (2000). The evaporation component is
estimated using equation 3 and includes a reduction scale pa-
rameter which needs to be calibrated (Makurira et al., 2010).

Es =max(1− ILA,0)max
(
kskpEo−EI,0

)
fms (3)

Figure 3. Results of model sensitivity analysis.

Where: Es is soil evaporation (mm day−1); Eo is pan evapo-
ration for the day, ILA is the leaf area index;EI is evaporation
from interception which has an effect of reducing evapora-
tion demand in the atmosphere; ks is soil evaporation factor
(equivalent to crop factor in cropped areas); kp is the pan
evaporation factor and fms is moisture stress reduction factor
given by Eq. (4).

fms =min(exp((υt − υsat)/b),1) (4)

Where: υsat is maximum soil moisture (which is soil moisture
at saturation) in the root zone (mm) and b is a reduction scale
(mm).

The vertical and lateral soil moisture fluxes are estimated
using Eq. (5). The hydraulic conductivity and diffusivity (Ks
and Fz in Eq. 5) vary hysterically with moisture. In order
to cater for hysteresis in hydraulic conductivity Mahrt and
Pan (1984) proposed a thin layer soil hydrology model in
which the hydraulic conductivity of a layer of soil when dry-
ing would be based on the soil moisture of the lower layer
and when wetting the hydraulic conductivity would be based
on the soil moisture of the upper layer. This approach was
adopted here.
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Figure 4. Model performance with reduction scale based on pre-
vailing soil moisture.

8m,t =KsFz
∂θ

∂x
(5)

Where:8m,t is soil moisture flux (flow) into or out of subplot
m at time t ; ∂θ/∂x is the soil moisture gradient given by
Eq. (6) andKs Fz is hydraulic conductivity and diffusivity of
the soil.

∂θ

∂x
=
θm,t − θm+1,t−1

1x
(6)

Where: θm,t−1 and θm+1,t−1 are the soil moisture in subplot
m and m+ 1 at end of time t and t − 1, respectively and 1x
is distance between the centre of subplots md and md+1.

The water transmission and storage processes were mod-
elled and incorporated in the subsurface water balance.
Mhizha (2017) provides more details of how this was done.
Equation (7) describes the soil moisture zone water balance.

1θ

1t
= eca

+ eatm
+ eas

+ egw
+ emp (7)

Where: 1θ/1t is change in soil moisture during the time
step; θm,t is soil moisture in subzone m at time t (current
time); θm,t−is soil moisture in subzonem, at time t−1; eca is
exchange with cropped area surface (infiltration); eatm is ex-
change with the atmosphere (evapotranspiration); eas is ex-
change with adjacent subzone (seepage); egw is exchange
with groundwater system (percolation); emp is exchange with
macropore spaces within the same subplot.

2.3 Fuzzy rainfall runoff modelling

This method makes use of several linear regression models
for estimating runoff amounts as a function of rainfall inten-
sity, rainfall duration, soil moisture and soil type. Application
of linear regression models for estimating runoff at field scale

Figure 5. Model verification farm A.

is common for experimental sites (Li et al., 2004; Walker and
Tsubo, 2003). To try and ensure a balanced influence of the
independent variables on modelled runoff, all the data were
normalized for the fuzzy modelling. Fuzzy modelling typi-
cally follows the IF-(antecedent part)–THEN-(consequence
part) approach which is controlled by an inference system
developed through the Mamdani or the Tagagi-Sugeno sys-
tem (Katambara and Ndiritu, 2009). By applying the Tagagi-
Sugeno fuzzy model development approach 5 multiple linear
regression models of the form given in Eq. (8) were estab-
lished. The linear modelling approach in Eq. (8) is in line
with the regression models normally used to model runoff at
field scale (Li et al., 2004; Walker and Tsubo, 2003). Each of
these models have their focal point whose positions are given
in Table 1. Fuzzification of data points was achieved through
establishing the degree to which each data set belonged to
any of the sub models. This together with the computation of
the overall runoff coefficient from the partial submodel con-
tributions (defuzzification) were done following the method
described in Katambara and Ndiritu (2009) for a fuzzy infer-
ence system developed to model stream flow.

qj,m = c0,m+ c1,mPij + c2,mTj + c3,mθj + c4,mαNj (8)

Where: qj,m is normalised runoff coefficient (mm) con-
tributed by partial model m during rainfall event j ; Pi,j is
normalised rainfall intensity during rainfall event j (mm); Tj
is normalised rainfall duration for rainfall event j (hours); θj
is normalised root zone soil moisture during event j (mm);
αNj is normalised soil parameter defining soil hydraulic con-
ductivity for event j and c0,m, c1,m, c2,m, c3,m and c4,m are
coefficients to input variables for cluster m.

2.4 Sensitivity analysis, model calibration and
performance assessment

A sensitivity analysis was carried out to establish data and
model parameters that affect model outputs. This involved
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Table 4. Model performance during calibration and verification
stages.

MPC MAC MVA MVB

NSE 0.657 0.522 0.622
PBIAS −1.28 6.1 −5.3
R2 0.586 0.627 0.615

Key: MPC is model performance criteria; MAC
is model performance after calibration for farm
A; MV model verification (A-farm A and
B-farm B). NSE is Nash-Sutclife efficiency;
PBIAS is Percent Bias and R2 is Coefficient of
determination.

modifying selected input parameters while holding all other
parameters constant (Hoyos and Cavalcante, 2015; Kumar et
al., 2014). The sensitivity of model output to the different
parameters was compared using the condition number which
expresses the rate of change of the dependent variable with
respect to the rate of change in the independent variables
(Hoyos and Cavalcante, 2015). The parameters that were as-
sessed for sensitivity are shown in Table 3. The values were
increased or reduced by 0 to 30 % of base value.

Model calibration for the fuzzy component applied the
SCE-UA method (Duan et al., 1992) with the objective of
minimizing the root mean square error between the simulated
and observed runoff. The calibrated coefficients of each sub
model are given in Table 2. The overall model calibration
was based on the sensitivity analysis results after which the
model was calibrated by adjusting the value of the sensitive
parameter.

Performance of the overall model was assessed using the
Nash-Sutcliffe efficiency (NSE) (Eq. 9), the Percent bias
(PBIAS) determined by Eq. (10) and coefficient of determi-
nation (R2) (Eq. 11) as defined by Moriasi et al. (2007).

NSE= 1−


n∑
i=1

(
Yi,obs−Yi,sim

)2
n∑
i=1

(
Yi,obs−Yobs

)2
 (9)

PBIAS=


n∑
i=1

(
Yi,obs−Yi,sim

)
× (100)

n∑
i=1
Yi,obs

 (10)

R2
=


n∑
i=1

(
Yi,obs−Yobs

)(
Yi,sim−Ysim

)
√

n∑
i=1

(
Yi,obs−Yobs

)2√ n∑
i=1

(
Yi,sim−Ysim

)2


2

(11)

Where: Yi,obs and Yi,sim are the observed and simulated val-
ues for data point i and Yobs and Ysim are observed and sim-
ulated mean values for all the data points.

Figure 6. Model verification farm B.

The data that was used for verification was for a rainfall
season different from that which was used during model cal-
ibration. Data from field A for the season 2009/2010 were
used for model calibration while that from field A and field
B for the season 2010/2011 were used to show how the model
would perform in an independent field not used to calibrate
the model.

3 Results and discussion

Figure 5 shows the PBIAS for eight parameters that were
used in the sensitivity analysis. The results showed that the
model is sensitive to the value of the field capacity, the re-
duction scale, pan evaporation data and soil evaporation.
This was further confirmed by the condition number (CN)
as shown in Table 3. The condition number was calculated
by considering the change in simulated soil moisture when a
parameter value is changed by the indicated percentage com-
pared to the simulated value when all parameters maintain
their base values as the dependent variable and the percent-
age change in parameter value as the independent variable
(Hoyos and Cavalcante, 2015).

Except the reduction scale the other three (field capac-
ity, pan evaporation and soil evaporation) values can be im-
proved through more accurate field observations. Therefore
the reduction scale was established to be the only parameter
that required calibration. The reduction scale was also found
to be the next most sensitive parameter after field capacity
of the soil. Trial modelling runs also revealed that reduction
scale was dependent on the prevailing soil moisture (Eq. 4)
although Makurira et al. (2010) had previously used a con-
stant reduction scale (Fig. 4). The value of the reduction scale
after calibration was found to be equal to the prevailing soil
moisture minus the soil moisture at wilting point. This shows
that the reduction scale is not constant but a variable parame-
ter that depends on soil moisture. This conforms to the units
of the reduction scale as given in Eq. (4).
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The uncertainty in the modelled soil moisture resulted
largely from the uncertainty in field data (rainfall, evapora-
tion and soil parameters) and the model structure. The struc-
ture of the model is such that runoff modelled by the fuzzy
component of the model becomes input data to the process
based component of the model. Zere et al. (2005) estab-
lished a performance level of R2

= 0.49 for a maize plot
and R2

= 0.59 for a bare plot using the PutRun model. In
addition to the uncertainty arising from the modelled runoff
soil moisture simulated in one time step is used as input data
when modelling the next time step. These two factors affect
the overall performance of the model.

Results of the verification of model performance are
shown in Figs. 5 and 6. The model performance (Table 4)
with NSE value of 0.52 to 0.66 and PBias value of −1.3 %
to 6.1 for soil moisture compare favourably with the results
obtained by Ruidisch et al. (2013) who modelled ridge culti-
vation in South Korea using HYDRUS 2-D model on a simi-
lar soil (loam) and obtained a NSE value of 0.48 and PBIAS
of 12 %. Again the R2 value of 0.59 to 0.63 for the modelled
soil moisture indicates fairly good model performance con-
sidering that uncertainty in estimating runoff affects overall
model output.

The strength of this modelling approach lies in the fact
that it can be applied to a field where data on runoff does
not exist. The runoff of such a field with limited data is es-
timated by taking into account the prevailing conditions on
the field and relates them to the focal points of the fuzzy sub
models developed from fields that had data. This is similar
to the approach that is taken when modelling ungauged sites
where model parameters from gauged basins are extrapolated
to ungauged sites (Kapangaziwiri et al., 2009). This means
that there is potential to apply this approach in data scarce
situations.

4 Conclusions

A realistic modelling of contour ridged field water dynam-
ics was achieved using fuzzy logic rainfall-runoff modelling
and process based approaches of quantifying soil moisture
fluxes. The model was tested using field data collected from
a site in rural Zimbabwe. The model performed reasonably
well in calibration with a Nash-Sutcliffe Efficiency of 0.657,
overall percent bias of−1.28 % and a Coefficient of determi-
nation of 0.586. In verification the model performed equally
well with Nash-Sutcliffe Efficiency of 0.522, overall percent
bias of 6.1 % and a Coefficient of determination of 0.627 on
the loam soil and Nash-Sutcliffe Efficiency of 0.622, overall
percent bias of −5.3 % and a Coefficient of determination of
0.615 on the sandy soil. The applicability of this modelling
to contour ridge design for rainwater harvesting needs to be
assessed further. The modelling approach applied here could
also be applicable to hydrological modelling in data-scarce
situations.

Data availability. The model code can be obtained from the Uni-
versity of Witwatersrand Library or from the authors. The underly-
ing research data set is available in the Supplement.
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