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Abstract. The demand for water resources is rapidly growing, placing more strain on access to water and its
management. In order to appropriately manage water resources, there is a need to accurately quantify available
water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms
of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation
of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the
Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters) are significant
sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable
sources of model input data because available databases generally consist of only licensed information and actual
use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water
resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected
and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the
Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low
flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were
between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical
runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15
and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For
the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean
monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66
and 17.72 Mm3 after the uncertainty in water use information was added.

1 Introduction

The continued socio-economic development of riparian
countries of the Limpopo River leads to pressure on the wa-
ter resources of the basin. The management of the water re-
sources is, therefore, critical to avoid conflict and ensure eq-
uity and accessibility to the resource for both urban and ru-
ral populations. There are also various other competing wa-
ter users such as the environment (environmental water re-
quirements), livestock farming, irrigation, and mining opera-
tions. An identification of runoff generating processes, water

use and a clear understanding of their linkages within the
basin are needed for improved quantification of the water
resources of the basin, a requisite for better resource man-
agement. There are several challenges within the Limpopo,
including shortages of water (e.g. droughts in the southern
part of Zimbabwe and western Botswana), flooding (espe-
cially in the Mozambique part of the basin) and water quality
issues (e.g. in the Oliphant’s sub-basin in South Africa). One
way of contributing to finding solutions for some of these
problems is the understanding of the process linkages for im-
proved resource quantification. However, in the absence of
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Figure 1. Map of the Mogalakwena (a) and Shashe (b) sub-basins and their locations in the Limpopo River Basin.

historical observed data (large parts of the basin are virtually
ungauged) of the different aspects of the hydrology of the
basin (such as rainfall, streamflow, water use, etc.) hydrolog-
ical models are generally used to generate data and informa-
tion that inform management and policy decision making.

Ideally, any hydrological model should be based on a
sound conceptual understanding of the processes operating
in the basin and should be backed by quantitative informa-
tion that can be used for the parameterization of the model
(Hughes et al., 2006, 2010). However, these data are often in-
adequate in many sub-basins, necessitating the incorporation
of the uncertainty related to the estimation process. Given the
diversity of the four riparian countries on data collection and
management, the quantity and quality of the data in the basin
varies and therefore a framework that incorporates estimates
of uncertainty should be applied to deal with this challenge.
Earlier studies (e.g. Matji and Görgens, 2001) have generally
concentrated on the main stem of the basin and this study ex-
plains the possible uncertainty related to the modelling pro-
cess.

2 Study Area

Two physically and socio-economically contrasting sub-
basins were chosen for the study (Fig. 1). The Mogalakwena
River rises as the Nyl River south of Mokopane flows north-
wards into the Limpopo (Busari, 2008). The Mogalakwena
sub-basin, with a drainage area of 19 400 km2, is located in
South Africa and is very densely populated and industrial-
ized incorporating the towns of Modimolle, Mookgopong,
and Mokopane (Fig. 1a). The Shashe sub-basin (Fig. 1b),

shared between Botswana and Zimbabwe, rises on the bor-
der of the two countries. It flows south, past Francistown (in
Botswana) where after the flow changes to a south-easterly
direction along the border for about 362 km until it flows into
the Limpopo River.

While the sub-basins are near one another, they however
have different physical characteristics such as rainfall, evap-
oration, soils, geology and land cover which, in turn, influ-
ence the runoff rates, water use, and abstractions. Also, since
the catchments are located in different countries, the data col-
lection methods vary affecting the data quality and availabil-
ity. In South Africa, hydrological data can be accessed freely
from sources such as the Water Resources Studies (1990,
2005 and 2012), national departments such as the Depart-
ment of Water and Sanitation (DWS) and the Department of
Agriculture, Forestry and Fisheries (DAFF), whereas hydro-
logical data for Botswana and Zimbabwe are more difficult
to access, the records of poorer quality often with missing
values, and large areas are ungauged. The two study areas
are therefore chosen to show the impacts of different phys-
ical and hydro-climatic data conditions on estimated water
resources.

3 Data and Methodology

The Pitman model has been widely used for water resources
assessment in most of the southern Africa region since its de-
velopment in the early 1970s (Wilk and Hughes, 2002). The
Spatial and Time Series Information Modelling (SPATSIM,
Hughes and Forsyth, 2006) version of the Pitman model (Pit-
man, 1973) was used to quantify water resources of the se-

Proc. IAHS, 378, 11–16, 2018 proc-iahs.net/378/11/2018/



N. Oosthuizen et al.: Parameter and input data uncertainty estimation 13

lected sub-basins. It is a conceptual type model with param-
eters that are associated with components that represent the
main hydrological processes (and human impacts) that oper-
ate at a sub-basin scale (Hughes et al., 2010). The SPATSIM
version of the model is designed to handle multiple model
runs that are required to consider uncertainty issues arising
from the quantity and quality of the input data (Kapangazi-
wiri et al., 2012). This version also has explicit surface-
ground water interaction routines (Hughes, 2004) and a wet-
land function. Table 1 shows the main parameters of the
model (Hughes et al., 2006).

Runoff is mainly generated by two model functions. The
first is an asymmetrical triangular distribution of catchment
absorption rates defined by parameters ZMIN, ZAVE and
ZMAX. The second function determines the drainage rate
from the main moisture storage (S, with a capacity of ST,
mm). This storage is depleted by evapotranspiration, inter-
flow and groundwater recharge. The maximum interflow (FT,
mm month−1) and recharge (GW, mm month−1) rates oc-
cur at ST, while two power functions (parameters POW and
GPOW) determine these rates at lower values of moisture
storage (S, mm). Recharge is routed through a groundwater
storage function that accounts for evapotranspiration losses,
drainage to other catchments and contributions to base flow.

The model also has functions that simulate the impact of
human activities like small farm dams, large reservoirs and
irrigated agriculture in managed basins. Detailed descrip-
tions of the model can be found in Hughes et al. (2006) and
Kapangaziwiri et al. (2012).

3.1 Data collection

For this study, the impact of uncertainty related to farm
dam and irrigation data was evaluated. The data sources that
were used include: the 2012 national water resources assess-
ment study of South Africa (called the WR2012) database,
data from the South African Department of Agriculture,
Forestry and Fisheries (DAFF) and remote sensing prod-
ucts for the Mogalakwena sub-basin. For Shashe, besides
remotely-sensed information, the data from the Limpopo
River Basin Monograph study (LIMCOM, 2013) were used.

The farm dam data (and all the other data used in this
study) were collected at the scale at which water resources
decisions are made (i.e. at the so-called quaternary catch-
ment for the Mogalakwena and at the sub-zone scale for
Shashe). In this study, both quaternary and sub-zones are re-
ferred to just as catchment. For purposes of simplicity and
also based on the model used, the individual small farm dams
in each catchment were added up to form one dam at the
outlet, whose parameters (e.g. full supply capacity and area)
were then subsequently specified and the level of uncertainty
where necessary. Only the surface areas of the identified farm
dams were estimated from the remote sensing and through
a manual digitizing process. The dam capacities had to be
calculated using a generalised relationship between capacity

and area at full supply level provided by LIMCOM (2013).
While many approaches to the estimation of dam capacities
could be used (e.g. Sayl et al., 2016; Hughes and Mantel,
2010 and Sawunyama et al., 2006) this equation was chosen
since it was applied successfully in the whole of the Limpopo
basin, and is given as:

Surface Area= 0.4 · (Capacity)0.7 (1)

The calculated volumes were similar to those contain in ex-
isting national databases and were therefore assumed ade-
quate to use. For running the uncertainty in the SPATSIM
version of the Pitman model, minimum (Min) and maximum
(Max) values are required in the model setup. The percentage
differences between the average of minimum and maximum
of dam volumes or irrigation areas was thus determined to
represent the uncertainty. This is given by: [maximum av-
erage − minimum average)/maximum average value]× 100
(Sawunyama et al., 2011).

WR2012 irrigation data for Mogalakwena sub-basin were
compared to the data received from the South African De-
partment of Agriculture, Forestry and Fisheries (DAFF) and
remotely-sensed data. For the Shashe sub-basin, the LIM-
COM (2013) data were also compared to areas digitised in
Google Earth.

3.2 Uncertainty analysis

The analysis focused on the impact of uncertainties related
to the main physical parameters of the runoff generation pro-
cess and water use data (i.e. irrigation and farm dams) on
the estimation of sub-basin water resources. Parameter un-
certainties were considered first, before the incorporation of
water use uncertainties.

In this study, the parameter values for each run of the
model are independently randomly sampled from the inputs
by making use of a Normal (defined by the mean and stan-
dard deviation) frequency distribution. As soon as a param-
eter set generates a simulation that satisfies all of the con-
straints, it is saved to the SPATSIM database (Ndzabandzaba
and Hughes, 2017). However, when 1000 output behavioural
parameter sets have been found the model terminates. Since
the constraints define the uncertainty in the hydrological re-
sponse behaviour of each of the selected sub-basins (Yadav,
et al., 2007; Westerberg et al., 2011, 2014) all of the saved pa-
rameter sets represents behavioural responses (Beven, 2012).

4 Results and Discussion

4.1 Uncertainty results

A significant difference between the irrigation coverage is
observed for the Mogalakwena catchments giving relatively
huge uncertainty. However, the difference between the irri-
gated areas sourced from the LIMCOM (2013) compared to
the areas digitised from Google Earth is marginal, resulting
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Table 1. A list of the parameters of the Pitman model including those of the reservoir water balance model (Hughes et al., 2006).

Parameter Units Parameter Description

RDF – Controls the distribution of total monthly rainfall over four iterations
AI Fraction Impervious fraction of sub-basin
PI1 & PI2 mm Interception storage for two vegetation types
AFOR % % area of sub-basin under vegetation type 2
FF – Ratio of potential evaporation rate for Veg2 relative to Veg1
PEVAP mm Annual sub-basin evaporation
ZMIN mm month−1 Minimum sub-basin absorption rate
ZAVE mm month−1 Mean sub-basin absorption rate
ZMAX mm month−1 Maximum sub-basin absorption rate
ST mm Maximum moisture storage capacity
SL mm Minimum moisture storage below which no GW recharge occurs
POW – Power of the moisture storage – runoff equation
FT mm month−1 Runoff from moisture storage at full capacity (ST)
GPOW – Power of the moisture storage – GW recharge equation
GW mm month−1 Maximum ground water recharge at full capacity, ST
R – Evaporation-moisture storage relationship parameter
TL months Lag of surface and soil moisture
CL months Channel routing coefficient
DDENS – Drainage density
T m2 d−1 Ground water transmissivity
S – Ground water storativity
GWSlope – Initial ground water gradient
AIRR km2 Irrigation area
IWR Fraction Irrigation water return flow fraction
EffRf Fraction Effective rainfall fraction
NIrrDmd Ml yr−1 Non-irrigation demand from the river
MAXDAM Ml Small dam storage capacity
DAREA % Percentage of sub-basin above dams
A, B – Parameters in non-linear dam area-volume relationship
IrrAreaDmd km2 Irrigation area from small dams
CAP Mm3 Reservoir capacity
DEAD % Dead storage
INIT % Initial storage
RES 1–5 % Reserve supply levels (percentage of full capacity)
ABS Mm3 Annual abstraction volume
COMP Mm3 Annual compensation flow volume

in small uncertainty. Nevertheless, the uncertainty still had an
impact on the low flows of the sub-basins. Shashe catchments
BS4 and BS5 have little irrigated areas and the difference be-
tween the irrigated areas provided by LIMCOM (2013) and
manual digitizing was too small to impact the results.

The overall calculated uncertainty of the Mogalakwena
sub-basin varied between 30 and 100 % and between 5 and
100 % for the farm dams and irrigation data respectively. For
the Shashe sub-basin, where farm dams and irrigation ex-
isted, the calculated uncertainty varied between 5 and 90 %
and between 10 and 100 % farm dams and irrigation respec-
tively.

4.2 Water resources simulation of the Mogalakwena
sub-basin

Based solely on the uncertainty related to model parameters,
the simulated monthly flows ranged between a minimum of
21.53 Mm3 and a maximum of 24.68 Mm3; resulting in a
mean monthly flow of 22.62 Mm3. Results indicate that the
whole range of flows (i.e. high, medium and low flows) is
impacted when uncertainty related to natural parameters is
considered. Adding the uncertainty related to water use (i.e.
irrigation and farm dams) data resulted in minimum simu-
lated flows of 22.15 Mm3 and a maximum of 24.99 Mm3.
High flows are more impacted than low flows.
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4.3 Water resources simulation for the Shashe
sub-basin

The difference between the model parameters and water use
uncertainties is barely noticeable for some catchments of
the Shashe. This is because the cumulative volumes of the
farm dams was too small to have a noticeable impact on
the total predictive uncertainty. The same applies to the ir-
rigation water use uncertainty. Considering uncertainty re-
lated to the natural parameters of runoff generation, the simu-
lated mean monthly flow was 14.54 Mm3 with a maximum of
17.15 Mm3 and a minimum of 11.66 Mm3. When the uncer-
tainty related to the water use data was added the minimum
value of the simulated flow remained the same, whereas the
maximum increased to 17.72 Mm3.

5 Conclusions

The main objective of the study was to demonstrate that esti-
mated water resources are capable of spanning a wide range
of plausible or probable values when considering the uncer-
tainties in model parameter estimation, our understanding of
the hydrological processes prevalent in a basin and how those
processes are represented in the model as well as the use of
limited and often poor quality historical observed data to cal-
ibrate the model. This study gives insight into how the simu-
lation of the natural water resources of the Mogalakwena and
Shashe sub-basins would be expected to vary when expected
uncertainty is incorporated into the estimation process. It can
be concluded that uncertainty (in this case related to param-
eter and water use data) plays an important role in the esti-
mation of water resources as demonstrated in the sub-basins.
The uncertainty related to the estimation of water use data
tends to affect the medium to low flows more than just con-
sidering parameter uncertainty. Farm dams absorb the flows
during the high flow season, whereas irrigation would be im-
portant during the low flow season. This study provides a
limited illustration of how the identification and quantifica-
tion of parameter and water use uncertainties can provide in-
sight into the possible impacts of using a database such as the
national water resources assessment study (WR2012) with-
out examining the quality of the data. This study is a step
forward in providing insight into water resources estimations
based on the data that are routinely used in the assessment
processes without examining the possible impact of the un-
certainties related to those data.

Data availability. Data not publicly available as they were ob-
tained from a consultant with the express caveat that they would
only be used for the project and not shared publicly. However, these
data will soon be available on the Limpopo Management Informa-
tion System (LIMIS) which is managed by the Limpopo River Basin
Commission who contracted the consultant to collect the data.
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