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Abstract. The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water
scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change
on the future streamflow in this basin is very important for local policy and planning on food security. In this
study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm)
statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and
RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity
(VIC) model with 0.25◦× 0.25◦ spatial resolution was developed based on downscaled fields for simulating
streamflow in the future period over YRB. The results show that with the global warming trend, the annual
streamflow will reduced about 10 % during the period of 2021–2050, compared to the base period of 1961–1990
in YRB. There should be suitable water resources planning to meet the demands of growing populations and
future climate changing in this region.

1 Introduction

Climate change through the temperature, precipitation, evap-
oration and other factors to change the impact of hydro-
logical circulation system, leading to different spatial and
temporal scale of water redistribution (Stocker, 2013).With
the global climate changes, both the precipitation and runoff
in Yellow River Basin (YRB) present obviously decreasing,
while the water shortage of the Yellow River basin will likely
be intensifying with the economic development (Wang et al.,
2011; Hao et al., 2011; Duan et al., 2014). Meanwhile, YRB
is well known not only for its history and large drainage area
but also for its frequent floods and serious droughts. So, it
is important to analysis climate change and its impact on the
hydrological process in YRB.

The global climate models (GCMs) driving hydrological
models to calculate watershed hydrological conditions is a
common means of studying the effects of climate change
on water resources (Zhang and Wang, 2007). However, the
coarse resolution makes GCMs’ simulation of regional and

extreme weather events accuracy is not high (Xu et al., 2010).
Downscaling technology is a bridge that connects GCMs
low-resolution output to high-resolution meteorological el-
ements for hydrological model (Wilby et al., 2002). Statisti-
cal downscaling methods are widely used for easy to con-
struct, diverse methods, and flexible form (Tareghian and
Rasmussen, 2013; Murphy, 2000). Li et al. (2010) proposed
an equidistant cumulative distribution function matching
method (EDCDFm) based on the quantile function method,
which consider the differences between the projected cli-
matic factors and the historical statistical cumulative dis-
tribution of climatic factors. This method can effectively
capture the extreme elements of climate factors, improving
the simulation accuracy of climate factors (Wang and Chen,
2014; Aloysius et al., 2016). In this study, the EDCDFm was
used to downscale eight models published in the phase five
of the Coupled Model Intercomparison Project (CMIP5) of
the GCMs over the YRB from 1961 to 2099 under RCP4.5
and RCP8.5 two emission scenarios. The performances of
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Table 1. The information of eight CMIP5 models.

Model Version Institute Horizontal Resolution
(latitude× longitude)

bcc-csm1-1 Beijing Climate Center 2.8◦× 2.8◦

CanESM2 Canadian Center for Climate Modeling and Analysis 2.8◦× 2.8◦

CCSM4 National Center for Atmospheric Research 1.25◦× 0.9◦

CSIRO-Mk-3-6-0 CSIRO Marine and Atmospheric Research 1.875◦× 1.875◦

GISS-E2-R Goddard Institute for Space Studies, New York, NY 2.5◦× 2◦

MPI-ESM-LR Max Planck Institute for Meteorology 1.875◦× 1.875◦

MRI-CGCM3 Meteorological Research Institute 1.125◦× 1.125◦

NorESM1-M Norwegian Climate Centre 2.5◦× 1.875◦

downscaled monthly precipitation and temperature of the cli-
mate model were analyzed against to the observation data
during the historical period (1961–2005). Based on the ob-
servation data and downscaled data, the variable infiltration
capacity (VIC) hydrological model with 0.25◦× 0.25◦ grid
spatial resolution of the YRB was constructed. The Mann-
Kendall trend test was used to analyze the trend of simulated
streamflow.

2 Data set and methods

2.1 Study area and data set

As the second longest river in China , YRB is an important
agricultural production base in China, which locates in 32–
42◦ N and 94–119◦ E. YRB has a complex surface, large het-
erogeneity of surface vegetation, which is sensitive to cli-
mate change and human disturbance. The annual tempera-
ture in YRB has an obviously spatial uneven, which is higher
in the southeast but lower in the northwest. The precipita-
tion mainly occurs in summer rains more, southeast rainy,
northwest drought, plain precipitation is more than plateau,
mountain is more than basin. The whole basin was divided
into ten sub-catchments (Fig. 1), including seven catchments:
Tangnaihai (TNH), Lanzhou (LZ), Toudaoguai (TDG), Hejin
(HJ), Sanmenxia (SMX) and Huayuankou (HYK) with their
control stations in the trunk stream, two tributary catchments
Xianyang (XY) and Huaxian (HX) and an interior drainage
area (located in northern YRB between Wubao (WB) and
Longmen (LM) catchments).

We collected observation data (monthly precipitation and
monthly values of mean, minimum, and maximum surface
air temperature) of 101 weather stations in the YRB for the
period of 1961–2005, from China Meteorological Data Ser-
vice Center (CMDC) (http://data.cma.cn/). The meteorolog-
ical stations’ data was interpolated to interpolate at a spa-
tial resolution of 0.25◦× 0.25◦ using kriging method and the
temperature adjusted for differences in elevation between the
two grids taking into account the lapse rate of −0.65 ◦C for
every 100 m increase in elevation. The daily streamflow data

Figure 1. Distribution of 101 meteorological stations and ten hy-
drological stations in YRB.

of ten hydrological stations were collected from the “China
Year Books of Hydrology”.

Eight climate models for the climate change projections
under the RCP4.5 and RCP8.5 scenarios (Table 1) down-
loaded from the Program on Climate Model Diagnosis
and Intercomparison (PCMDI) website (https://esgf-node.
llnl.gov/search/cmip5/). All the historical simulations are for
the period of 1961 to 2005 according to the observed data
time series, and the future projects of RCP45 and RCP85
cover the period of 2006–2099. Because of the difference
of each climate model horizontal resolution, we used bilin-
ear interpolation to make all the GCM climate fields at same
spatial resolution (0.25◦× 0.25◦) with the observations.

2.2 Equidistant quantile-based mapping method

The equidistant CDF matching (EDCDFm) statistical down-
scaling method developed by Li et al. (2010) was applied to
bias correct the monthly precipitation and temperature fields
from eight CMIP5 models in YRB. EDCDFm uses the differ-
ences between the GCMs simulate climate factors and cumu-
lative distribution characteristics of regional observation cli-
mate to deviation correction about the climate, which is sim-
ulated by climate models. Compared the standard quantile-
based mapping method (CDF), the EDCDFm can capture the
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Table 2. The RMSE of monthly precipitation and temperature between observed and downscaled model simulated in YRB from 1961–2005.

Precipitation (mm) Mean Temperature (◦C) Max-Temperature (◦C) Min-Temperature (◦C)

bcc-csm1-1 37.12 1.82 2.21 1.96
CanESM2 36.39 1.82 2.20 1.95
CCSM4 36.23 1.79 2.18 1.88
CSIRO-MK3-6-0 36.07 1.85 2.35 1.82
GISS-E2-R 36.61 1.88 2.41 1.80
MPI-ESM-LR 36.59 1.90 2.36 1.94
MRI-CGCM3 36.25 1.92 2.31 1.99
NorESM1-M 35.67 1.78 2.13 1.94
Ensemble 28.10 1.40 1.73 1.46

extreme climate effectively, improving internal error climate
model data and the limitation of the application of the method
of interpolation, and then improve the accuracy of the climate
simulation (Eq. 1). In this study, we applied this method first
to correct the biases in the historical period (1961–2005) and
then to the future period (2006–2099) for each model.

xm−p,adjst=xm−p+F−1
o−c(Fm−p(xm−p))−F−1

m−c(Fm−p(xm−p)) (1)

where F is the CDF of either the observations (o) or model
(m) for a historic training period, current climate period (c)
or future projection period (p).

2.3 Evaluation of model performance

Root mean square error (RMSE) and correlation coefficient
(CC) were used to evaluate the downscaled model perfor-
mance against to the observations. The RMSE and CC be-
tween a model-simulated and observation climate fields are
defined as:

RMSE=

√√√√√ n∑
i=1

(Mi −Oi)2

n
(2)

and,

CC =

n∑
i=1

(Mi −M i)(Oi −Oi)√∑n
i=1(Mi −M i)2

∑n
i=1(Oi −Oi)2

(3)

Where M , O, M i , Oi are the simulated fields, observation
fields, and mean of simulated fields, mean of observation
fields, respectively. i is the number of spatial grid cells.

2.4 VIC Model

VIC model is a semi distributed, physically based, macro-
scale surface water and energy balance hydrological model.
It can be run in either water balance mode or full water and
energy balance mode. The model takes into account the land-
gas water balance and energy balance, the unevenness of the

spatial distribution of soil water storage capacity, consider-
ing streamflow yield under saturated storage and streamflow
yield under excess infiltration, nonlinear regression of base
flow. The Richards equation is used to describe the vertical
one-dimensional soil water movement, and the Darcy law is
used to describe the process of water vapor flux in soil lay-
ers (Zhang et al., 2009). We used observed data and eight
downscaled model’s outputs as the climatic forcing data of
the VIC model. The VIC model has seven sensitive param-
eters that need to be calibrated for the study area, including
the infiltration curve index (infilt), the lowest maximum base
of soil flow (Dsmax), base flow of nonlinear growth occurs
and the proportion of the Dsmax (Ds), the ratio of the bottom
soil maximum moisture base flow nonlinear growth (Ws), the
depth of soil layer (Depth1, Depth2, Depth3). In this study,
Nash Sutcliffe coefficient (NSCE; Nash and Sutcliffe, 1970)
and total relative Bias were used to evaluate the model simu-
lations.

3 Results and discussions

3.1 Assessment of downscaled outputs

RMSE of monthly precipitation and temperature between
downscaled outputs with observations were presented in Ta-
ble 2. It could be found that the RMSE of eight model’s
ensemble for both precipitation and temperature is lower
than any individual model. Among eight models, model
NorESM1-M shows the smallest RMSE between precipi-
tation, mean temperature, maximum temperature, and min-
imum temperature than any other model. The RMSE of
monthly precipitation from individual model varies from
35.67 to 37.12 mm, and model bcc-csm1-1 has the high-
est RMSE value. The downscaled monthly mean tempera-
ture has lowest RMSE varies from 1.78 to 2.41◦ than that
of maximum and minimum temperature. Model MPI-ESM-
LR has the highest RMSE of monthly mean temperature,
model GISS-E2-R has the highest value of maximum tem-
perature, and model MRI-CGCMS has the highest RMSE
value of minimum temperature. The standard deviation and
correlation using Taylor figure (Taylor, 2001) of eight models
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Figure 2. Taylor diagram of standard deviation and correlation of observed and downscaled (a) monthly precipitation, (b) mean temperature,
(c) maximum temperature, and (d) minimum temperature in YRB (1961–2005).

and their ensemble against to the observations (Fig. 2). The
correlation coefficient of precipitation is about 0.83. Mean-
while, the monthly mean, maximum, and minimum temper-
ature have higher correlation coefficient (around 0.99) than
that of precipitation. Especially, the multi-model ensembles
of precipitation and temperature present higher correlation
coefficient than any single model. It shows that the multi-
model ensemble can reduce the noisy of each model’s sim-
ulation. Therefore, we analyzed the spatial distribution of
RMSE and CC of eight model simulations against to the ob-
servations.

The spatial distribution of RMSE of downscaled ensemble
outputs against to the observations was presented in Fig. 3.
It shows that the highest RMSE occurred in the east area
varies from 56 to 72 mm, while the lowest values occurred
in the west area varies from 16 to 24 mm. The RMSE of the
maximum and minimum temperature in the middle of north
area is larger than other regions. Meanwhile, the west area
has the highest correlation coefficient of precipitation varies
from 0.8 to 0.9, while middle area has the lowest correla-
tion coefficient with the observed precipitation. The mean

and minimum temperature have good correlation coefficient
with the observations varies from 0.98 to 0.99 for the whole
basin. The correlation coefficient of the maximum tempera-
ture is lower than that of mean and maximum temperature,
and the west region has the relatively lowest correlation co-
efficient value (about 0.96). Thus, we can conclude that these
downscaled eight model’s ensemble is good at simulating the
precipitation and temperature in YRB.

3.2 VIC model calibration and validation

We analyzed the NSCE and Bias of the VIC model simu-
lations with the observed streamflow of each hydrological
station for calibration period and validation period (Table 3).
The whole basin was divided into ten sub-catchments for cal-
ibration and validation. For nested catchments, the upstream
flood wave was routed into the downstream with the Musk-
ingum method. Then by taking the difference between ob-
served and routed ones of downstream, the hydrograph for ar-
eas between upstream and downstream was derived and was
further applied for calibration. Since no observation stations
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Figure 3. Spatial distribution of RMSE (a–d) and CC (e–h) showing comparison of monthly model set range simulations over the region
with observations (1961–2005).

Table 3. The statistics of calibration and validation periods monthly
flows for the ten sub-catchments in YRB.

Hydrology NSCE Bias (%)

Station Calibration Validation Calibration Validation

TNH 0.879 0.804 −1.6 13.3
LZ 0.833 −0.070 −1.8 7.8
TDG 0.448 −2.73 43.5 86.5
WB 0.979 0.879 3.5 13.8
LM 0.983 0.92 4.3 8.4
SMX 0.951 0.887 4.0 14.7
HYK 0.236 0.394 2.5 9.2
HJ 0.651 0.224 3.1 133.4
XY 0.744 0.176 −1.1 68.9
HX 0.942 0.886 4.6 20.1

were collected for the catchments of interior drainage area
and the lower reaches of HYK, parameters from their each
adjacent catchment, WB and HYK respectively, were em-
ployed for computation instead. The NSCE of seven stations
are above 0.7 and the bias of streamflow is around±5 % dur-
ing the calibration period (1961–1990). Meanwhile, there are
five stations has a higher Nash value above 0.7 during the val-
idation period (1991–2012). These results indicate that VIC
model is good at simulating the hydrological procession of
the Yellow River.

3.3 Projected changes of precipitation and temperature

During future period of 2021–2050, the annual precipita-
tion for two RCPs show an increase trends, and the in-
creasing rate varies from 7.795 mm/10 a to 11.56 mm/10 a for
RCP4.5 and RCP8.5, respectively (Fig. 4). Seasonal precip-
itation presents a slightly increasing trend in spring and au-
tumn, while a very slightly decreasing trend with the rate of
2.99 mm/10 a in summer for RCP4.5. On the other hand, the
changing trends of winter precipitation for RCP8.5 is similar
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Figure 4. The time series of annual and seasonal precipitation for
RCP4.5 and RCP8.5 from 2021 to 2050 in YRB.

with that of RCP4.5 with a higher increasing rate. Notably,
the summer precipitation of RCP8.5 shows an increase trend
with the rate of 2.27 mm/10 a, which is opposite to that of
RCP4.5.
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Figure 5. The time series of annual and seasonal temperature for
RCP4.5 and RCP8.5 from 2021 to 2050 in YRB.

During the period of 2021–2050, the basin average tem-
perature shows an obviously increasing for two RCPs
(Fig. 5). Annual mean temperature projected an increasing
rate of 0.373◦/10 a and 0.46◦/10 a for RCP4.5 and RCP8.5,
respectively. Both RCP4.5 and RCP8.5 all project an increas-
ing trend of seasonal temperature in YRB. The changing rate
of seasonal temperature for RCP8.5 more than 0.47◦/10 a,
which is higher than that of RCP4. 5. Meanwhile, the fastest
increasing of seasonal temperature occur in winter with the
rate of 0.47◦/10 a and 0.50◦/10 a for RCP4.5 and RCP8.5,
respectively. The changing rate of seasonal temperature for
RCP4.5 is uneven for all seasons, in which autumn is in-
creasing more quickly (about 0.07◦/10 a) than that of spring.
Whereas RCP8.5 projects a similar increasing rate in spring
and autumn, while a little higher in summer and winter.

3.4 Ensemble streamflow prediction

During the period of 2021–2050, the spatial distribution of
MK for annual streamflow for RCP4.5 scenario shows an ob-

viously increasing trend in the middle of the basin, while de-
creasing in the west and north parts of basin. RCP8.5 projects
a different trend of annual runoff with RCP4.5, which re-
markable increasing in the east part of basin and decreas-
ing in the west part of basin (Fig. 6). Seasonal streamflow
of basin average for RCP4.5 and RCP8.5 show a slightly in-
creasing trend except in summer of RCP4.5, which shows a
slightly decreasing trend.

Notably, the spatial distribution of MK test for seasonal
streamflow shows an uneven spatial changing trend (Fig. 7).
For example, the streamflow shows a remarkable increas-
ing trend in the sub-catchment of LZ in spring and autumn,
while which shows a slightly decreasing trend in summer
for RCP4.5. For the middle parts of YRB, the streamflow
presents an unobvious decreasing trend in summer, while in-
creasing in spring. For RCP8.5, streamflow of north parts of
YRB shows a slightly increasing trend except the upstream
region. Notably, the streamflow in upstream of YRB shows
an obviously decreasing trend in summer and autumn for
RCP8.5, while which shows an increasing trend in spring.

For further analysis of the changing trend of streamflow
in YRB for the future period, we compared the changes of
future streamflow with that of base period (1961–1990) in
Fig. 8. In the future period, the VIC model simulated annual
and seasonal streamflow reduce obviously compared with the
base period. The annual streamflow will reduce about 10 %
for two RCPs. The seasonal streamflow projected a reduce
ratio of 3.44, 3.70, and 5.48 % in spring, summer, and au-
tumn for RCP8.5, respectively, which is bigger than that of
RCP4.5. Especially, the streamflow projected a remarkable
reduce in winter about 41.11 and 35.11 % for RCP4.5 and
RCP8.5, respectively.

4 Conclusions

The statistical downscaling method of EDCDFm is good
at simulated historical period of precipitation and temper-
ature in YRB. The eight models ensemble outputs show a
higher correlation coefficient and lower RMSE than any sin-
gle model. Projected precipitation and temperature all show
an increasing trend during the period of 2021–2050. Com-
pared to the base period (1961–2050), the annual streamflow
of future period will reduced about 10 % and the streamflow
in winter will reduce about 40 %. With the increasing of pop-
ulation and economic of YRB, there will be more require for
the water resource in the future.

Data availability. The CMIP5 raw model outputs can be found
in: https://esgf-node.llnl.gov/search/cmip5/. The observation data
of weather stations in the YRB for the period of 1961–2005 can
be found in China Meteorological Data Service Center (CMDC)
(http://data.cma.cn/). Other data in this paper is not available.
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Figure 6. MK trend of annual streamflow for RCP4.5 and RCP8.5 from 2021 to 2050 in YRB.

Figure 7. The spatial distribution of Mann-Kendall trend test of the streamflow during 2021 to 2050 in the YRB for two scenarios.
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Figure 8. Projected changes of annual and seasonal streamflow
(2021–2050) against to the base line period (1961–1990) for
RCP4.5 and RCP8.5 in YRB.
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