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Abstract. The APEC Climate Center (APCC) produces climate prediction information utilizing a multi-climate
model ensemble (MME) technique. In this study, four different downscaling methods, in accordance with the
degree of utilizing the seasonal climate prediction information, were developed in order to improve predictabil-
ity and to refine the spatial scale. These methods include: (1) the Simple Bias Correction (SBC) method, which
directly uses APCC’s dynamic prediction data with a 3 to 6 month lead time; (2) the Moving Window Regres-
sion (MWR) method, which indirectly utilizes dynamic prediction data; (3) the Climate Index Regression (CIR)
method, which predominantly uses observation-based climate indices; and (4) the Integrated Time Regression
(ITR) method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal down-
scaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil
and Water Assessment Tool (SWAT) model. Long-term predictability of water quality within the Wecheon water-
shed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment’s Provisions
of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-
month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an
integrated approach, which takes into account various climate information and downscaling methods for water
quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by
extreme climate in advance.

1 Introduction

Demand from water resources managers for seasonal climate
prediction information with a lead-time of several months is
increasing as this information can provide key knowledge on
issues like long-term dam inflow and water quality prediction
information. Long-term water quality forecasts are particu-
larly important in watershed management because they al-
low for these managers to implement proactive water quality
control management techniques. The importance of utilizing
long-term forecasts for proactive management of water qual-
ity is becoming more important, particularly in non-point
source pollution cases. Non-point source pollution flows into
the water bodies during rainfall events and gradually induces
the water quality problems such as algae (e.g. Meng et al.,
2010; Xu et al., 2012). However, seasonal forecast informa-

tion has yet to be widely utilized in this manner mainly due
to its high uncertainty levels. In addition to the issue of high
uncertainty, there are large differences in the spatio-temporal
scale between the forecast data that is necessary for water
quality management and the data that is currently provided.
Therefore, in order to address these concerns, the develop-
ment of spatiotemporal downscaling techniques are impera-
tive in order to fully apply long-term climate prediction in-
formation to water quality management in a large region.

There are two approaches to downscaling: (1) dynamic,
and (2) statistical. Dynamic downscaling approach is not
commonly used mainly due to its more time- and cost-
intensive nature compared to that of the statistical approach.
For this reason, the statistical downscaling approach has been
used to attempt to enhance the utilization of data created
using dynamical models. In previous studies the regression
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method, which indirectly uses atmosphere-ocean variables
from dynamic prediction data as predictors for forecasting
local target variables based on high correlation, was applied
instead of directly using the target variables in order to im-
prove predictability (Kang et al., 2009, 2014). Other statis-
tical approaches that improve predictability, use only those
lagged climate indices that have high correlation with local
climate variables. The lag time based climate index approach
has been used in regions that have strong tele-connection
between global climate indices and local climate variables
(Bridhikitti, 2013; Hamlet and Lettenmaier, 1999; Schepen
et al., 2012; Räsänen and Kummu, 2013). In Korea, there has
been research on seasonal prediction using lagged climate
indices, which have high correlation with precipitation and
temperature on the Korea peninsula (Kim et al., 2007; Kim
and Kim, 2010). In addition, various studies have been con-
ducted using climate indices in connection with the precipita-
tion of the East Asian region, including the Korea Peninsula
(Lee et al., 2008; Wang et al., 2008). Recently, the Hybrid
approach, which combines dynamically and statistically pre-
dicted climate information, has been applied to improve the
predictability of the seasonal forecast (Robertson and Wang,
2012; Schepen et al., 2012).

Therefore, the objectives of this study are: (1) to develop a
hybrid downscaling technique for predicting long-term pre-
cipitation and temperature on the Korea peninsula, by consid-
ering both the multi-model based prediction data provided by
the APEC Climate Center (APCC) and the statistical predic-
tion information based on teleconnection for water resources
management; and (2) to evaluate the applicability of the sea-
sonal forecast information in long-term future water quality
predictions by using the predicted climate information as in-
put to watershed modeling.

2 Methodology

Figure 1 shows a flow chart of the overall study: (1) Sea-
sonal Climate Forecasting (steps j–n in the figure); (2) Tem-
poral Downscaling (steps o and p); and Long-Term Water
Quality Forecasting (steps q and r). Steps j–n include the de-
velopment and application of four downscaling methods to
predict the monthly precipitation and temperature depending
on the available weather information. Steps o and p include
converting monthly forecast information to daily data at the
weather station levels using temporal downscaling based on
the average, minimum (MIN), and maximum (MAX) of the
multi-model ensemble (MME). Steps q and r include the as-
sessment of the predictability in simulating monthly water
quality by aggregation of daily water quality output, using
predicted daily weather data as input to the watershed mod-
eling.

2.1 Seasonal climate forecasting

The purpose of seasonal climate forecasting is to generate
monthly precipitation and temperature prediction data on the
target area while improving predictability by using differ-
ent source of global climate information. The overall sea-
sonal climate forecasting technique combines four differ-
ent downscaling methods according to the degree of using
dynamic prediction data produced by global climate mod-
els (GCMs). These methods include: (1) the Simple Bias
Correction (SBC) method, which directly uses APCC’s cli-
mate prediction data with 3 to 6 month lead time; (2) the
Moving Window Regression (MWR) method, which indi-
rectly utilizes the dynamic prediction data; (3) the Climate
Index Regression (CIR) method, which predominantly uses
the observation-based climate indices without using any
prediction data; and (4) Integrated Time Regression (ITR)
method, which uses predictors selected from both CIR and
MWR. Since predictability on the Korean peninsula may
differ depending on the target month and selected method,
predictability was evaluated using the simple average of all
available forecast information.

Simple Bias Correction (SBC) is a forecast-based direct
downscaling method which uses GCM’s prediction data to
adjust the monthly mean of predicted precipitation and tem-
perature through a simple bias-correction. For example, if
the precipitation and temperature prediction data on Korean
peninsula is needed, SBC directly uses the grid values of
precipitation and temperature variables, which are produced
from GCMs over the corresponding area. The systematic bias
is adjusted for precipitation and temperature by using the ra-
tio and addition, respectively, in order to make the monthly
average of prediction same to the average of observation for
the same period.

Moving Window Regression (MWR), which is similar
to Kang et al. (2009) in the concepts and methodology,
is a forecast-based indirect statistical downscaling method,
which uses the proxy variables, produced by GCMs as pre-
dictors of regression model when high correlation exists be-
tween proxy variables and regional target variables. If there
are limitations in directly predicting target variables such
as precipitation (PREC) and temperature at 2 m (T2M) in
the target area, the MWR method uses the oceanic and at-
mospheric circulation variables as predictors to improve the
seasonal prediction predictability in the target region. Avail-
able proxy variables provided by APCC include temperature
at 850 hPa (T850), zonal wind at 200 hPa (U200), merid-
ional wind at 200 hPa (V200), zonal wind at 850 hPa (U850),
meridional wind at 850 hPa (V850), geopotential height at
500 hPa (Z500), sea level pressure (SLP), and sea surface
temperature (SST). In this study, only climate information
from the latitudinal range of−40–40◦ (centered on the equa-
tor) was used for the predictor selection procedures.

Climate Index Regression (CIR) is an observation-based
indirect statistical downscaling method that can be used
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Figure 1. Flow chart of integrated seasonal climate and water quality forecasting based on a modeling approach.

when there is a high correlation between global climate in-
dices and regional target variables with lag time. For real
time operation of CIR in predicting monthly precipitation
and temperature using climate indices, the lag time between
the monthly precipitation/temperature and indices should be
larger than the lead-time. The CIR method is similar to the
MWR method in that both methods indirectly utilize the cor-
relation between regional target variables and global scale
climate variables related to oceanic and atmospheric circula-
tion. There is a difference between the CIR and MWR meth-
ods when selecting predictors to forecast future seasonal tar-
get variable values. While the MWR method uses simulta-
neous proxy predictors that are predicted by GCMs, the CIR
method uses the observed climate information from a few
months ago by taking into account the lag time. A 2 to 6
month range of lag time was used in this study for 3 month
lead forecasting.

Integrated Time Regression (ITR) is an indirect statistical
downscaling method that uses both forecast and observation
based predictors from the MWR and CIR methods, respec-
tively. As a result, it can be used only when the MWR and
CIR methods simultaneously select predictors for a particu-
lar target period. From the best predictors determined by the
MWR and CIR methods, a selection of final predictors for the
multivariate regression model are finally selected through the
Akaike Information Criterion (AIC) analysis.

The statistical downscaling model was constructed sep-
arately for each month and target variable. The concepts
of both cross-validation and split-validation were applied in
developing statistical downscaling methods such as MWR
and CIR in order to prevent overfitting problems, which can
occur when constructing statistical forecasting models. The
Leave-one-out cross-validation (LOOCV) technique was ap-

plied to the observation period (1983–2013). In other words,
when predicting target variables for a specific target period
(year/month), all predictors for the same target period are re-
moved from the model construction procedure in order to re-
produce the same conditions as the real time forecasting. For
example, when predicting for January 1983, only predictors
from January 1984 to 2013 are utilized in constructing the
regression model. Predictions are made in the same way for
the rest of simulation period. For each cross-validation pro-
cess, the split validation approach was applied, and then the
best predictors that showed consistent performance for both
training and verification periods were finally selected.

2.2 Temporal downscaling

In addition to predicted monthly precipitation and tempera-
ture, additional long-term climate variables including wind
speed, solar radiation, and relative humidity, are necessary
at the daily time-scale in order to use the seasonal fore-
cast information as inputs to watershed modeling. From
a geographical standpoint, considering the spatial correla-
tion among weather stations is very important in the tem-
poral downscaling procedure. In this study, a sampling ap-
proach that extracts daily weather variables from the past
observations within the target region was selected. First, the
year/month from previous observed data that is most simi-
lar to the regional average in predicted climate patterns is
determined, considering both precipitation and temperature
simultaneously. This was done using the Mahalanobis dis-
tance method (Mahalanobis, 1936) by considering the co-
variance between precipitation and temperature. Then, the
daily weather variables for each weather station are extracted
from the selected year/month.
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2.3 Evaluating Predictability

It is necessary to conduct calibration and validation proce-
dures first in order to evaluate the modeling-based water
quality predictability using watershed-scale model. In the
case of the flow rate, the total error (Err) and Nash-Sutcliffe
Efficiency index (NSE) were used to evaluate the perfor-
mance of the model based on simulated and monitored data.
For water quality components such as Total Nitrogen (TN)
and Total Phosphorus (TP), graphical approach based on
trial-and-error methods was used to evaluate model perfor-
mance.

Err=

∣∣∣∣ n∑
i=1
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n∑
i=1

Pi

∣∣∣∣
n∑

i=1
Oi

× 100 (1)

NSE= 1−

n∑
i=1

(Oi −Pi)2

n∑
i=1

(
Oi − Ō

)2 (2)

where Oi = observed value, Pi = predicted value, Ō = ob-
served mean, and n = number of simulations.

According to the Provisions of Water Quality Prediction
and Response Measures of the Korean Ministry of Environ-
ment, modeling-based predictability was evaluated by us-
ing 3-month lead prediction data forecasted in February,
May, August, and November as model inputs in the Soil and
Water Assessment Tool (SWAT). The ultimate goal of the
modeling-based predictability evaluation is to compare the
generated predicted water quality output to the observed wa-
ter quality, using long-term weather prediction information
as watershed model inputs. However, the generated water
quality outputs that used observed weather data as model in-
puts, was also compared with the predicted water quality in
order to distinguish the uncertainties caused by parameteriza-
tion of watershed models and long-term climate prediction.

3 Materials

3.1 Study watershed and watershed model

The Wecheon watershed within the Nakdong River basin
was selected for this study mainly due to the relatively few
changes in land-use within the watershed for a long period
of time. The watershed has a high percentage of rural areas,
and low percentage of waste water treatment plants. As a re-
sult, in 2011, it was found that non-point source pollution
caused around 80 % of the total Biological Oxygen Demand
(BOD) pollutant load within the watershed, which is sensi-
tive to rainfall characteristics. Therefore, the Wecheon water-
shed is suitable to evaluate the applicability of seasonal fore-
cast information for watershed management purposes when

considering higher impacts by climate factors compared to
human factors.

Figure 2 shows the locations of the weather, water level,
and water quality monitoring station network. Younggok and
Wecheon-B stations were selected to calibrate the flow and
water quality related parameters of the selected watershed
model, respectively, because their measurement points are lo-
cated relatively close to each other.

The Soil and Water Assessment Tool (SWAT) model was
selected in this study to simulate the TN and TP movements
from upland areas to streams. SWAT, which was developed
by the US Department of Agriculture to predict the long-term
behavior of hydrology and contaminants at large watershed
scale, divides the watershed into multiple sub-watersheds in
order to capture the different spatial characteristics (Neitsch
et al., 2005). Each sub-watershed is subsequently subdivided
into multiple Hydrologic Response Units (HRUs) by group-
ing them according to their similar properties, such as land
use, soil, and slope. In addition to the hydrological processes,
using the Modified Universal Soil Loss Equation (MUSLE)
can simulate soil erosion. The transport mechanisms of or-
ganic substances like nitrogen, phosphorus, and pesticides,
can also be simulated. Water, sediments, and nutrients that
are introduced from the HRUs into the water body are sim-
ulated through a reaction mechanism within the water body
(Neitsch et al., 2005).

In this study, Wecheon watershed was divided into 29 sub-
watersheds and 1866 HRUs by combining land use, soil, and
the Digital Elevation Model (DEM). Two years of warm-up
simulations were conducted for the initialization of the model
parameters. Then, the model was calibrated and validated us-
ing measured data for 2007–2008 and 2010–2011, respec-
tively. The trial-and-error method was used for the model cal-
ibration procedure. Therefore, manual calibration of the flow
rate was conducted first and then calibration of the sediment
and nutrient related parameters were conducted sequentially.

3.2 Climate information

APCC has been collecting monthly dynamic prediction data
produced by 16 institutions and has been producing 3-month
and 6-month lead Multi-Model Ensemble (MME) climate
forecasts every month. In this study, 3-month lead seasonal
forecast data which were regrided with 2.5◦×2.5◦ resolution
based on 10 individual Global Climate Models (GCM) were
used for the SBC and MWR downscaling methods. Table 1
shows the description of 10 GCMs used.

When using the CIR method, we used the real time 25
climate indices as predictors: 16 climate indices that are up-
dated on a monthly basis by NOAA, through the webpage
(http://www.esrl.noaa.gov/psd/data/climateindices/list/), and
9 indices which are extracted monthly at APCC using the
NCEP/NCAR Reanalysis 1 data (Table 2).
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Figure 2. (a) Location of the monitoring network; (b) land use; and (c) elevation of the Wecheon watershed.

Table 1. Description of ten GCMs used as predictors.

Model acronym Institution(country) Model resolution Ensemble size

CWB Central Weather Bureau (Taipei) T42L18 10
GDAPS_F Korea Meteorological Administration

(Korea)
T106L21 20

HMC Hydrometeorological Centre of Russia
(Russia)

1.125◦× 1.40625◦ 20

JMA Japan Meteorological Agency (Japan) T95L40 31
MSC_CANCM3 Meteorological Service of Canada

(Canada)
1.41◦× 0.94◦ 10

MSC_CANCM4 Meteorological Service of Canada
(Canada)

1.41◦× 0.94◦ 10

NASA National Aeronautics and Space
Administration (USA)

288× 181 9

NCEP NCEP Climate Prediction Center
(USA)

T62L64 15

PNU Pusan National University (Korea) T42L18 5
POAMA Centre for Australian Weather and Cli-

mate Research/Bureau of Meteorology
(Australia)

T47L17 10
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Table 2. Monthly updated climate indices used for seasonal predic-
tion.

Abbreviation Full name

PNA* Pacific North American Index
EP* East Pacific/North Pacific Oscillation
WP* Western Pacific Index
NAO* North Atlantic Oscillation
SOI* Southern Oscillation Index
NINO3* Eastern Tropical Pacific SST
TNA* Tropical Northern Atlantic Index
TSA* Tropical Southern Atlantic Index
WHWP* Western Hemisphere warm pool
ONI Oceanic Nino Index
MEI* Multivariate ENSO Index
NINO12* Extreme Eastern Tropical Pacific SST
NINO4* Central Tropical Pacific SST
NINO34* East Central Tropical Pacific SST
NOI Northern Oscillation Index
NP North Pacific pattern
TNI Trans-Niño Index
AO Antarctic Oscillation
AAO Antarctic Oscillation
PACWARM Pacific Warm Pool (1st EOF of SST

(60–170◦ E, 15◦ S–15◦ N) SST EOF)
EOFPAC Tropical Pacific SST EOF
ATLTRI Atlantic Tripole SST EOF
AMO* Atlantic multi-decadal Oscillation
QBO* Quasi-Biennial Oscillation
ESL* Equatorial Eastern Pacific SLP

∗ Data source is NOAA and remaining is APCC.

This study utilizes the observed monthly precipitation and
temperature data from the Korean peninsula, based on 57 Ko-
rean weather stations (Fig. 1).

4 Results

4.1 Evaluation of the downscaling method

Table 3 shows the results of prediction models that have been
selected for each case (month and variable). When using the
Simple Bias Correction (SBC) method, total of 21 and 36
models were selected for precipitation and temperature, re-
spectively. For precipitation forecasting, a similar number of
models were selected for different lead times (6, 7, and 8
models for 1, 2, and 3 month lead times, respectively). For
temperature forecasting, the number of models varied be-
tween different lead times (20, 10, and 8 models for 1, 2,
and 3 month lead times, respectively). The MWR method
selected 19 models for precipitation forecasting and 9 mod-
els for temperature forecasting. For precipitation forecasting,
the number of models varied between different lead times
(6, 4, and 9 models for 1, 2, and 3 month lead times, re-
spectively). For temperature forecasting, a similar number of

models were selected for different lead times. When utilizing
the Climate Index Regression (CIR) method, only one index
(the Western Pacific Index, “WP” with 5 month lag) was se-
lected to predict precipitation in July, while two indices such
as the Pacific Warm Pool (PACWARM) with 6-month lag and
the Atlantic Tripole SST EOF (ATLTRI) with 3-month lag
were selected to predict temperature in September and Oc-
tober, respectively. As a result, the ITR method was selected
to forecast precipitation levels in July and temperature lev-
els in September and October, When MWR model selections
are available. Overall, the SBC method, which is based on
dynamic prediction data, shows the highest model selection
and is followed by statistical downscaling methods such as
MWR, and CIR/ITR. The SBC method shows the highest
selection of models for 1-month lead temperature prediction
for September with 6 models, while the MWR method shows
the highest selection of models for 1-month lead precipita-
tion prediction for September with 3 models. Figure 3 shows
an example of spatial distribution of the three predictors that
have been selected by the MWR method for 1-month lead
precipitation prediction for September.

An evaluation of predictability when issuing forecasts ev-
ery month was conducted, as shown in Fig. 4. For example,
when we predict precipitation levels in August during the
month of July, all three prediction results (including 1-month
lead prediction issued in July, 2-month lead prediction issued
in June, and 3-month lead prediction issued in May) can be
used. Figure 5 illustrates an evaluation of predictability using
a simple average of multi-model predictions.

Figure 5 shows the temporal correlation coefficient for
each month according to changes in lead time. For precipita-
tion prediction, there were difficulties when selecting models
for January, March, May, and June. The months of February,
July, and December show Temporal Correlation Coefficient
(TCC) values that are greater than 0.6 for most lead times. In
December, when the selected models are based on dynamic
model predictions, there is a decreasing in TCC values as
the lead times increase. Figure 5 also shows that there are
difficulties when selecting prediction models for temperature
predictions February, March, April, and June. The greatest
TCC values occurred during the month of September, when
most of the model selections are based on the SBC method,
directly using dynamic prediction data.

4.2 Long-term water quality forecast

Table 4 shows the monthly Total Error (Err) and Nash-
Sutcliffe Efficiency Index (NSE) for streamflow during the
calibration and validation periods. The Errs were less than
5 % for both calibration and validation periods (−1.6 and
−1.1 % Err, respectively). NSE values were greater than 0.9
for both calibration and validation periods (0.95 and 0.92,
respectively). This indicates that streamflow simulation us-
ing the Soil and Water Assessment Tool (SWAT) is satis-
factory. Figures 6 and 7 compare the measured and simu-
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Table 3. Selected downscaling method and models for each month according to different lead time and variables.

Month Var 1 month lead 2 month lead 3 month lead

Jan P B_JMA
B_POAMA

T B_GDAPS_F
B_PNU
B_MSC_CANCM3
B_MSC_CANCM4
M_POAMA

B_POAMA M_CWB

Feb P M_CWB M_GDAPS_F

T B_JMA

Mar P B_POAMA

T B_GDAPS_F
B_JMA

Apr P B_NASA
M_NCEP
M_PNU
B_HMC

T M_GDAPS_F B_NASA

May P

T M_CWB M_PNU M_MSC_CANCM3

Jun P M_HMC M_MSC_CANCM4

T

Jul P C_Lag C_Lag I_PNU

T B_JMA M_GDAPS_F M_POAMA

Aug P B_JMA B_GDAPS_F

T B_HMC
B_PNU

M_CWB

Sep P M_NCEP
M_PNU
M_POAMA

B_PNU B_GDAPS_F
B_PNU

T B_GDAPS_F
B_HMC
B_JMA
B_PNU
B_NASA
B_POAMA
I_NASA

B_GDAPS_F
B_NASA
B_PNU
I_MSC_CANCM4
I_NCEP

B_GDAPS_F
B_HMC
B_JMA
B_NASA
B_PNU
C_Lag

Oct P M_MSC_CANCM4

T B_GDAPS_F
B_HMC
B_PNU
I_MSC_CANCM3

B_GDAPS_F
B_JMA
B_NASA
B_PNU
C_Lag

B_GDAPS_F
C_Lag

Nov P B_PNU B_GDAPS_F
B_PNU
B_JMA

B_PNU
B_JMA
B_POAMA
M_MSC_CANCM3

T B_POAMA B_JMA
M_PNU

Dec P B_POAMA
M_PNU
M_MSC_CANCM4

B_JMA
B_POAMA
M_HMC
M_POAMA

B_POAMA
M_GDAPS_F
M_POAMA
M_NASA

T B_POAMA B_JMA

P : Precipitation, T : Temperature, B_: simple bias correction (SBC), M_: Moving Window Regression (MWR), C_: Climate
Index Regression (CIR), I_: Integrated Time Regression (ITR)
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Figure 3. Spatial distribution of selected variables by the NCEP, PNU, and POAMA models for 1-month lead precipitation predictions in
September (yellow indicates most frequent selection through the cross-validation procedures from 1983 to 2013).

Figure 4. Description of the monthly prediction approach and use
of different amounts of prediction data according to lead time.

lated Total Nitrogen (TN) and Total Phosphorous (TP) loads
at the Wecheon-B station. It was also determined that the
SWAT appropriately reflects the seasonal variation of TN and
TP loads in the watershed. As a result, the long-term cli-
mate forecast data were utilized as weather inputs with fixed
SWAT parameters in order to further assess the predictability
in long-term water quality predictions.

Table 4. Results of SWAT calibration and validation for monthly
streamflow.

Performance measures Calibration Validation

% Error −1.6 −1.1
Monthly NSE 0.95 0.92

Figure 8 shows the comparison of observed pollutant
loads (Observed-WQ), simulated pollutant loads using ob-
served weather data (SWAT-Observed), and simulated pol-
lutant loads using forecasted MME data (SWAT-Forecast).
When comparing Observed-WQ and SWAT-Forecast, the
temporal correlation coefficient (TCC) was 0.22 for TN. This
low TCC value may be due to the overestimation by SWAT-
Forecast during the period of 2007–2010. However, TCC in-
creased to 0.58 when comparing SWAT-Forecast to SWAT-
Observed due to their good temporal agreement. A com-
parison of TP load shows a similar trend to TN compari-
son results by showing TCC values of 0.05 and 0.49 when
SWAT-Forecast was compared to Observed-WQ and SWAT-
Observed, respectively. We found that uncertainty from the
SWAT parameterization was higher than the uncertainty from
the climate forecast, illustrated by the big differences in their
TCCs. The high uncertainties in model parameterization can
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Figure 5. Temporal correlation coefficients (TCC) according to changes in lead time for predicting precipitation (top) and temperature
(bottom) using multi-model ensemble (MME) average.

Figure 6. Comparison of simulated and observed total nitrogen (TN) load for calibration (top) and validation (bottom) periods.

be caused by the lack of sampled data used to estimate
monthly pollutant loads. TN and TP concentrations were
measured around four times every month and the monthly
pollutant load was estimated by multiplying the concentra-
tion and flow rate. As a result, monthly pollutant loads can
be affected by flow rate depending on the sampling time.

Table 5 shows the monthly comparison of TCC values
according to different references as observation including
Observed-WQ and SWAT-Observed. When SWAT-Forecast
is compared to Observed-WQ, only March has a TCC value

that is greater than 0.5 for TN, and all months have TCC
values that are less than 0.5 for TP. However, when SWAT-
Forecast is compared to SWAT-Observed, 3 months from
March to May have TCC values that are greater than 0.5
for both TN and TP predictions. Even though there were
difficulties in selecting models between March and May for
both precipitation and temperature, this period had the high-
est predictability in long-term water quality forecast. On the
other hand, water quality predictions in July and December,
when predictability in precipitation prediction was high, had
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Figure 7. Comparison of simulated and observed total phosphorus (TP) load for calibration (top) and validation (bottom) periods.

Figure 8. Comparison of observed pollutant loads (Observed-WQ),
simulated pollutant loads using observed weather data (SWAT-
Observed), and simulated pollutant loads using forecasted MME
data (SWAT-Forecast) at Wecheon-B water quality monitoring sta-
tion.

low TCC values. This indicates that marginally higher pre-
dictability, in precipitation and temperature predictions, does
not guarantee higher predictability in long-term water quality
prediction.

5 Conclusions

Four different downscaling methods in accordance with the
degree of utilizing seasonal climate prediction data were de-
veloped in order to improve predictability and refine the spa-
tial scale. These methods include: (1) the Simple Bias Cor-
rection (SBC) method, which directly uses the APCC’s cli-
mate prediction data with 3 month lead; (2) the Moving
Window Regression (MWR) method, which indirectly uti-

lizes prediction data; (3) the Climate Index Regression (CIR)
method, which predominantly uses observation-based cli-
mate indices; and (4) the Integrated Time Regression (ITR)
method, which uses predictors selected from both the CIR
and MWR methods. Overall, the SBC method, based on dy-
namic prediction data, shows the highest model selection
and is followed by statistical downscaling methods such as
MWR, and CIR/ITR.

Then, sampling-based temporal downscaling using the
Mahalanobis distance method was conducted in order to
create daily weather inputs to the Soil and Water Assess-
ment Tool (SWAT) model. Long-term predictability of water
quality within the medium-size Wecheon watershed of the
Nakdong River Basin was evaluated. According to the Provi-
sions of Water Quality Prediction and Response Measures of
the Korean Ministry of Environment, modeling-based pre-
dictability was evaluated by using 3-month lead prediction
data forecasted in February, May, August, and November as
model inputs of SWAT. The results indicate that marginally
higher predictability in precipitation and temperature predic-
tions does not guarantee higher predictability in long-term
water quality predictions.

Finally, we presented an integrated approach that takes
into account various climate information and downscaling
methods for water quality prediction, which can be used to
proactively prevent potential problems caused by extreme
climate events.

6 Data availability

Seasonal forecast data by individual models are available
at the APCC Data Service System website (APCC) (http://
adss.apcc21.org/). Monthly climate indices data are available
at the Climate Indices website (APCC) (http://www.apcc21.
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Table 5. Monthly comparison of temporal correlation coefficient (TCC) according to different references as observation.

Month Total Nitrogen (TN) Total Phosphorus (TP)

SWAT-Forecast SWAT-Forecast SWAT-Forecast SWAT-Forecast
vs. Observed-WQ vs. SWAT-Observed vs. Observed-WQ vs. SWAT-Observed

Jan −0.47 −0.27 −0.38 −0.08
Feb 0.01 0.00 −0.34 0.26
Mar 0.72 0.67 0.45 0.68
Apr 0.40 0.80 −0.20 0.71
May −0.34 0.58 −0.26 0.74
Jun −0.05 0.00 −0.15 −0.10
Jul −0.04 0.30 −0.46 0.27
Aug −0.25 0.14 −0.30 0.14
Sep 0.31 0.29 0.31 0.07
Oct −0.30 0.25 −0.14 −0.09
Nov 0.37 0.22 0.24 0.13
Dec −0.62 0.37 −0.39 −0.02

org/ser/indic.do?lang=en) and the Monthly Atmospheric and
Ocean Time Series website (ESRL) (http://www.esrl.noaa.
gov/psd/data/climateindices/list/).
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