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Abstract. Based on a hindcast experiment for the period 1982–2013 in 66 sub-catchments of the Swiss Rhine,
the present study compares two approaches of building a regression model for seasonal streamflow forecasting.
The first approach selects a single “best guess” model, which is tested by leave-one-out cross-validation. The
second approach implements the idea of bootstrap aggregating, where bootstrap replicates are employed to se-
lect several models, and out-of-bag predictions provide model testing. The target value is mean streamflow for
durations of 30, 60 and 90 days, starting with the 1st and 16th day of every month. Compared to the best guess
model, bootstrap aggregating reduces the mean squared error of the streamflow forecast by seven percent on
average. Thus, if resampling is anyway part of the model building procedure, bootstrap aggregating seems to be
a useful strategy in statistical seasonal streamflow forecasting. Since the improved accuracy comes at the cost
of a less interpretable model, the approach might be best suited for pure prediction tasks, e.g. as in operational
applications.

1 Introduction

Small sample sizes challenge the application of statistical
models for seasonal streamflow forecasting. For example, a
daily hydrometeorological time series of length 30 years can
be considered as a long record. However, at seasonal time
scales the series provides 30 cases (e.g. summer means). Fol-
lowing the nomenclature described by Hastie et al. (2009),
the model building procedure then has to cope with these 30
cases for:

1. model training, i.e. fit models with varying complexity
or different predictors;

2. model selection, i.e. validate the models and choose the
best one(s); and

3. model testing, i.e. estimate the final models prediction
error (possibly by combining several models).

To overcome small sample sizes, resampling is commonly
used for model selection and testing. In addition, seasonal

streamflow forecasting often encounters weak predictor-
predictand relationships, introduced by missing or noisy pre-
dictors – e.g. precipitation and temperature of the target sea-
son. Models out of any resampling thus can differ markedly,
which leads us to the following question: Are there any bene-
fits if the models resulting from resampling are combined in a
systematic way? To address this question, we compare (1) the
selection of a single “best guess” model along with leave-
one-out cross-validation against (2) bootstrap aggregating
along with out-of-bag prediction error estimates. Bootstrap
aggregating was introduced by Breiman (1996a, “bagging”
or “bagged model” for short) and aims to reduce the variance
of a statistical model by applying it to bootstrap replicates
of the data set and combining the corresponding predictions
afterwards.

Below Sect. 2 briefly presents the data set, Sect. 3 outlines
the methodology, and in Sects. 4 and 5 the results are pre-
sented and discussed, respectively.
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Figure 1. The study region comprises parts of Germany, Austria,
and Switzerland. Grey shaded regions indicate urban areas, points
mark gauging stations.

2 Data

The hindcast experiment is applied to 66 sub-catchments (no
nesting) of the Swiss Rhine at Basel, ranging in mean ele-
vation from 500 to 2300 m and in area from 20 to 900 km2

(Fig. 1). Streamflow is regulated and routed for the purpose
of hydro power, flood protection, water supply, and ecologi-
cal conservation. Up to 10 catchments can be considered as
heavily regulated; for the remaining catchments we assume
that anthropogenic effects on the catchments hydrology do
not have any impacts at seasonal time scales. Daily mean
streamflow in m3 s−1 for the period 1982–2013 is provided
by public authorities of Germany, Austria, and Switzerland,
whereas daily precipitation and temperature series are catch-
ment averages derived from the E-OBS gridded data set ver-
sion 12.0 in 0.25◦ resolution (approximately 19 and 28 km in
longitude and latitude; Haylock et al., 2008).

3 Methodology

The comparison of the two model building procedures re-
lies itself on the principle of cross-validation, i.e. some cases
are in turn excluded from the data set and the complete
model building procedures are conducted by using the re-
maining cases. Section 3.1 first introduces the regression
model, which is common to both model building procedures.
Section 3.2 then describes the two resampling approaches;
in case of the best guess model, resampling is solely used to
estimate the prediction error, whereas in case of the bagged
model resampling is at the heart of the model building pro-
cedure. Section 3.3 finally states the cross-validation imple-
mentation and the statistical test in order to contrast the two
procedures.

3.1 Regression model

The regression model follows closely the approach of Garen
(1992), i.e. initial conditions are considered only. The pre-
dictand yi,j is in turn mean streamflow of duration i =

30,60,90 d, starting at the 1st and 16th day of every month
(date of prediction j = 1, . . .,24). For a particular choice of i
and j , the regression equation is given by

yi,j = b01+Xb+ ε (1)

where b0 denotes the intercept, 1 a vector of ones, b the vec-
tor of regression coefficients, and ε the errors. The n×p ma-
trix X has in its p = 3 columns antecedent streamflow, an-
tecedent precipitation, and antecedent temperature as predic-
tors; n equals the number of years. The time aggregation is
individually selected for each predictor according to Spear-
man’s rank correlation, but has to be one of 10,20, . . .,720 d.
Since these predictors can be highly correlated, the regres-
sion coefficients b are estimated using partial least squares
(Mevik and Wehrens, 2007). Partial least squares is related to
principal components regression, but decomposes the cross-
covariance matrix XT y instead of the predictors covariance
matrix. Regarding model selection, we decide to select at
least the first partial least squares direction, as otherwise the
regression model shrinks to b0 in Eq. (1). Please note that we
do not make any distributional assumptions about ε.

3.2 Resampling approaches

The regression model from Eq. (1) is applied twofold for a
particular catchment and predictand yi,j :

1. A single best guess model is selected and the mean
squared error of prediction EMSP is estimated accord-
ing to leave-one-out cross-validation.

2. For each of 100 bootstrap replicates of the data set,
one model is selected. These models are then combined
by simply averaging their predictions (bootstrap aggre-
gating; Breiman, 1996a). Here, out-of-bag predictions
(Breiman, 1996b) are used to estimate EMSP.

Breiman (1996a) showed that the aggregation of unstable
models can help to decrease the prediction error. Instabil-
ity (or high model variance) refers to the case when small
changes in the data set lead to large changes in the final
estimated model. A simple linear model fitted by ordinary
least squares can be considered as an example for a stable
model whereas neural networks or regression trees generally
are examples for unstable models. The present model from
Sect. 3.1 is in our view a stable model – it is linear, consists
of three predictors (where only the time aggregations are al-
lowed to vary), and partial least squares further tries to reduce
the dimensionality of the predictor space.

The out-of-bag approach is closely related to the leave-
one-out procedure in that one case is left out at a time,
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i.e. the model averaging considers only those models for
which the “left-out” case was not included in the correspond-
ing replicates. Since prediction error estimates of out-of-bag
and leave-one-out approximately converge with an increas-
ing number of bootstrap replicates, the out-of-bag estimate
provides a convenient alternative – testing a bagged model
via leave-one-out can be computationally expensive due to
the involved bootstrap. Finally, the choice of 100 replicates
is based on the recommendation by Hastie et al. (2009) that
model training can be stopped as soon as the out-of-bag error
has stabilised.

Hereafter, the two approaches are named BGS/LOO (best
guess model BGS in combination with leave-one-out LOO)
and BAG/OOB (bagged model BAG in combination with
out-of-bag OOB), respectively.

3.3 Hindcast experiment

In order to contrast BGS/LOO with BAG/OOB, the 32 year
period of investigation is used for an additional leave-one-
out cross-validation. Doing so, we get an estimate of EMSP
independently of LOO and OOB. Here, also the three adja-
cent years of the left out case are omitted to avoid spurious
skill due to catchment memory (hence n= 25 in Eq. 1). Since
BGS/LOO and BAG/OOB are nested inside this “buffered”
leave-one-out cross-validation, we refer to the latter as the
outer cross-validation. Considering a particular catchment
and predictand yi,j , three steps are applied:

1. yi,j is centred to mean 0 and scaled to standard devia-
tion 1 with respect to the period 1982–2013.

2. Each year (together with its three adjacent years) is left
out once, while the remaining years are used for the ap-
plication of the model building procedures BGS/LOO
and BAG/OOB.

3. The mean value of yi,j serves as a competing model
(hereafter named the seasonal regime, SRG). Analogue
to BGS, EMSP is estimated by LOO as well as the outer
cross-validation.

Paired differences of EMSP are then used for inference. Here,
paired differences are calculated such that EMSP of the more
complex model is subtracted from EMSP of the less com-
plex model (always per catchment). The mean difference µ
is used for a right-sided t test (alternative hypothesis µ > 0).
Also a nonparametric bootstrap is applied to estimate the
probability P {µ > 0}, since the differences not necessarily
follow a Gaussian distribution.

4 Results

The results are arranged in three sections: Firstly, we contrast
BGS with BAG in order to see whether bagging improves the
predictions. Secondly, model skill is evaluated by comparing

Figure 2. EMSP for all catchments and predictands as obtained
from the outer cross-validation; n= 66.

BGS and BAG against SRG. Thirdly, we analyse the accu-
racy of EMSP estimates from LOO and OOB. In the follow-
ing subscript j is dropped when error statistics are averaged
over j .

4.1 Comparison of prediction error

The comparison of BGS against BAG focuses on EMSP from
the outer cross-validation: Fig. 2 suggests that BAG scores
on average the smaller EMSP. Also the p values indicate that
BAG is most likely able to reduce EMSP (third row in Ta-
ble 1). Table 2 lists additionally EMSP of BGS and BAG for
y30, y60, and y90, averaged over all catchments (i.e. the mean
value of the corresponding whisker boxes in Fig. 2). Indepen-
dently of the predictand, reduction of EMSP by using BAG
instead of BGS amounts to 7 to 8 %.

4.2 Comparison of model skill

For the evaluation of model skill we focus again on the EMSP
estimates from the outer cross-validation (Fig. 2). Due to
standardisation of yi,j , the benchmark model SRG shows an
EMSP near 1 for all catchments (a perfectly estimated mean
value would yield an EMSP of 1). On average SRG is a se-
rious competitor and outperforms BGS and BAG in several
catchments. Reduction of EMSP by using BGS and BAG in-
stead of SRG is strongest for y30 and weakest for y90. These
findings are also supported by Table 1, which reports the
p values of the t test and the bootstrap: It is questionable to
unlikely that BGS reduces EMSP on average, whereas BAG
very likely does for y30 and y60, but not for y90.

4.3 Comparison of prediction error estimation

Figure 3 shows the differences in EMSP, when LOO and
OOB estimates are subtracted from the estimates obtained
in the outer cross-validation, which are here considered to be
the reference. Thus, a positive difference can be attributed as
an underestimation and a negative difference as an overesti-
mation of the prediction error. Apart from a few outliers, the
differences lie in the interval [−0.1,0.1] and are symmetri-
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Table 1. p values for the null hypothesis “the simple model out-
performs the complex model”, estimated by a right-sided t test
(paired differences with mean difference µ and alternative hypoth-
esis µ > 0). Paired differences here follow the rule that EMSP of
the more complex model is subtracted from EMSP of the less com-
plex model, as specified in the first column. In parentheses also
the probabilities P {µ > 0} according to a nonparametric bootstrap
with 10 000 replicates are listed. Only EMSP from the outer cross-
validation is considered; n= 66.

y30 y60 y90

SRG-BGS 0.1 (0.09) 0.99 (0.99) 0.99 (0.99)
SRG-BAG < 0.01 (< 0.01) < 0.01 (< 0.01) 0.44 (0.45)
BGS-BAG < 0.01 (< 0.01) < 0.01 (< 0.01) < 0.01 (< 0.01)

Table 2. EMSP of BGS and BAG from the outer cross-validation,
averaged over all catchments; EMSP is based on centred and stan-
dardised yi,j . The last row indicates the reduction in EMSP when
BAG is used instead of BGS.

y30 y60 y90

BGS 1.02 1.09 1.13
BAG 0.95 1.00 1.04
1 – BAG/BGS 0.07 0.08 0.08

cally centred around zero – on average neither LOO nor OOB
tend to optimism or pessimism. The heavy negative outliers
correspond to the same catchment, which turns out to be reg-
ulated due to hydro power.

5 Discussion

In the present study, a hindcast experiment was conducted
that mimics the operational use of a simple forecasting
system. The objective was the comparison of two model
building procedures, which both rely on the same regres-
sion model, but use different resampling strategies: A sin-
gle best guess model, which is tested by leave-one-out cross-
validation, and a bagged model, which employs the bootstrap
technique in order to build an ensemble of models. An use-
ful byproduct of bagging is the out-of-bag prediction error
estimate, which in theory can replace an additional resam-
pling. Regarding the methodology, several points need some
attention:

– Catchments were selected without a priori reasoning
about their adequacy for seasonal streamflow forecast-
ing. Strictly speaking, none of these catchments exhibits
natural streamflow, though some anthropogenic effects
might be averaged out due to the seasonal time scale.
However, most of these effects are hardly quantifiable
and it is not clear whether or not they favour model skill.

– The standardisation of yi,j attaches all seasons and
catchments equal weights for the analysis. Doing so,

Figure 3. EMSP estimates of LOO (in case of SRG and BGS) and
OOB (in case of BAG) subtracted fromEMSP estimates of the outer
cross-validation for all catchments and predictands; n= 66.

model skill in seasons/catchments with large streamflow
variability is masked, e.g. in spring when snow melting
occurs and the models perform best (not shown).

– In order to compare the model building procedures,
EMSP estimates from the outer cross-validation are con-
sidered as the “true” values. This assumption is indeed
critical, but unavoidable in the present context – other-
wise the real-world data set has to be replaced with a
synthetic one.

– The residual analysis (not shown) reveals that the
prediction errors are not independent and identically
distributed. High flow is commonly underestimated,
whereas low flows are often overestimated. Technically,
the model can be considered as misspecified, since it
lacks relevant predictors (most likely precipitation and
temperature during the season to predict). Therefore,
common techniques to estimate prediction intervals are
not applicable. It remains to be tested whether a sub-
stitution of the missing predictors by climate indices or
seasonal climate predictions mitigates model misspeci-
fication.

6 Conclusions

The results are valid only for the present data set, though the
sample size of 66 catchments in combination with 72 predic-
tands might permit more general conclusions:

– BAG scores on average the lower EMSP than BGS. Bag-
ging is useful if the model is unstable (Breiman, 1996a).
Since we consider the applied model as rather simple
and stable, we argue that instability is introduced by
weak predictor-predictand relationships in combination
with small sample sizes. These weak (and sometimes
spurious) relationships propagate through the screening
of the time aggregation, the selection of partial least
squares directions, and the final regression coefficients.
Small changes in the data set thus often cause that com-
pletely different models are identified as the correct one.
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– For 30 and 60 day mean streamflow, BAG outperforms
in the majority of catchments a naive forecasting strat-
egy, which relies on long-term averages only (SRG).
Otherwise it is either questionable (30 day mean stream-
flow in case of BGS and 90 day mean streamflow in case
of BAG) or very unlikely that BGS and BAG provide on
average a smaller EMSP than SRG.

– LOO and OOB estimates of EMSP are for most catch-
ments close to EMSP from the outer cross-validation.
Neither LOO nor OOB tend to optimistic or pessimistic
estimates. Thus, instead of testing the bagged model via
the outer cross-validation, also the OOB estimates had
been quite accurate.

In practice, statistical seasonal streamflow forecasting is
commonly confronted with small sample sizes and weak
predictor-predictand relationships due to missing or noisy
predictors. The results of the present study indicate that bag-
ging is also able to reduce a pseudo model variance, intro-
duced by weak relationships and intensified by small sample
sizes. If resampling is anyway part of the model building pro-
cedure and weak relationships come along with small sample
sizes, we propose to prefer bagging to the best guess model
approach – the computational costs are nearly the same, out-
of-bag predictions provide model testing, and prediction er-
rors are likely to decrease. This benefit however comes at the
cost of a hardly interpretable model. We thus argue that bag-
ging is most useful when prediction alone is the goal, i.e. in
operational forecasting, be it seasonal streamflow or another
environmental variable.

7 Data availability

The streamflow series are provided by federal offices and
were manually compiled. The corresponding data poli-
cies do not allow data dissemination, though for Bayern
(http://www.gkd.bayern.de/fluesse/abfluss/karten/index.
php?thema=gkd&rubrik=fluesse&produkt=abfluss&gknr=0,
GKDB, 2016) and Austria (http://ehyd.gv.at/, BMLFUW,
2016) the series can be accessed online. The E-OBS data
set is publicly available at http://www.ecad.eu/ (E-OBS,
2016), the Corine Land Cover at http://www.eea.europa.
eu/data-and-maps/data/corine-land-cover-2006-raster-2
(CORINE, 2016), and the EU-DEM at http://www.eea.
europa.eu/data-and-maps/data/eu-dem (EU-DEM, 2016).
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