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Abstract. In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast
one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have
performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As
basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic
(Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the
historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the
starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience,
vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while
Type N was the worst performing. This clearly demonstrates the importance of good inflow information for

effective reservoir operation.

1 Introduction

The planning of reservoirs for various purposes including
flood and drought control relies on the historic inflow data at
the reservoir site. Due to natural variability and other factors
(e.g. climate and land-use changes), however, the inflow situ-
ation when the reservoir is being operated will be different. It
is therefore important that reservoirs are properly operated so
that they continue to perform satisfactorily during changing
hydro-climatology.

Reservoir operation concerns taking decisions on water re-
lease from a reservoir based on the amount of water available
vis-a-vis the demand placed on the system. The available
water is the sum of starting period storage and the inflow
expected during the period. Consequently, effective reser-
voir operation relies on reliable forecast of the inflow into
the reservoir. Traditional forecasting methods using hydro-
logic, hydraulic and time-series models require specification
of the functional relationship of the model which can be
problematic (Zhang et al., 1998), which is why focus has re-
cently shifted to the use of data-driven techniques that do
not require knowledge of this functional relationship. In par-
ticular, artificial neural networks (ANN) have been widely
used to forecast reservoir inflows (see e.g. Edossa and Ba-

bel, 2012; Mohammadi et al., 2005) due to their effectiveness
and flexibility and have been proven to be superior to other
approaches such as regression-based and time series models.

The aim of this study is to apply multi-layer perceptron
(MLP)-ANN for the one-month-ahead inflow forecasting for
the Ubonratana reservoir, Thailand. To investigate the ef-
fect of the forecasts on reservoir operation performance, four
situations were considered for the one-month-ahead inflow:
(1) inflow is known and assumed to be the historic (Type A);
(2) inflow is known and assumed to be the ANN forecast
(Type F); (3) inflow is known and assumed to be the historic
average for the given month (Type M); and (4) inflow is not
known and the release decision is conditioned only on the
starting reservoir storage (Type N). Simulations of the Ubon-
ratana reservoir were then carried out with these alternative
inflow scenarios and the resulting reservoir performance was
summarised in terms of reliability, resilience, vulnerability
and sustainability.

In the next section, further details about the methodology
will be given. This is then followed by the presentation of the
case study. Next the results are presented and discussed and
finally, the main conclusions are given.
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2 Methodology

2.1 Artificial neural networks modelling

The theory and mathematical basis of ANN have been de-
scribed excellently by Shamseldin (1997). Essentially, the
structure of ANN comprises an input layer, an output layer
and one or more hidden layers as illustrated in Fig. 1. The
schematic in Fig. 1 has a single hidden layer which is gener-
ally sufficient to approximate any complex, non-linear func-
tion (Mulia et al., 2015). The layers contain nodes or neurons
which are connected by weights. Determining optimal values
for these weights and other parameters of the network is the
purpose of the ANN training exercise.

For a given problem, the number of nodes in the output
layer is fixed by the problem, e.g. in the current work, it is
the 1-month ahead inflow forecast. The input nodes must be
determined by the factors known to affect the output variable
and this has been achieved through an examination of the
cross-correlation matrix (see Adeloye and De Munari, 2006).
The number of neurons in the hidden layer is much more
difficult to arrive at and is normally determined as part of the
training by trial and error as described by Adeloye and De
Munari (2006).

Training is often improved through the use of early-stop-
rule (ESR) that helps to avoid over-fitting. In ESR, the avail-
able data are divided into three parts: (i) a training set, used
to determine the network weights and biases, (ii) a valida-
tion set, used to estimate the network performance and de-
cide when the training should be stopped, and (iii) a test set,
used to verify the effectiveness of the stopping criterion and
to estimate the expected performance in the future.

The tested ANN architectures (in trying to arrive at the
best value for the number of hidden neurons) were compared
using the correlation coefficient (R) criterion, i.e.:

2 YsimYobs — m

o) (- )

where ysim and yops are respectively the simulated and ob-
served values of the output variable and N is the number of
exemplars used.

R =

@)

2.2 Reservoir performance simulation

Reservoir behaviour simulation employed the mass balance
equation (McMahon and Adeloye, 2005):

Si+1=58+0:— D; —E; 2

subject to the operational policy for the reservoir, where S;
and S;+1 are respectively storage at the beginning and end of
time ¢; Q; is the inflow to the reservoir during ¢; E; is the
net evaporation (evaporation minus direct rainfall) in period
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Figure 1. Schematic of artificial neural network.

t; D; is the total water release towards meeting the target
demand of D, during t.

As noted previously, the water available for allocation dur-
ing 7, WA, is:

WA, =S, + O, 3)

and assumes that the inflow is known at the start of the month
when making the release decision. In practice, however, this
is not the case and assumptions about the size of the antici-
pated inflow must be made. If the actual inflow turns out to
be exactly the same as the assumed inflow, then the end of
period storage will be exactly as given by Eq. (2). If, how-
ever, there is a discrepancy, the actual end of period storage
will be different from Eq. (2).

Let the actual end-of-period storage be Send;, the relation-
ships between this and S;1 for each of the assumed inflow
knowledge assumptions become:

1. Type A: WA; = S; + Q; and Send,r = Sr+1
2. Type F: WA, = S, 4+ Q) and Send;s = Si+1+ Q; — Q)
3. Type M: WA, = S, 4+ Q, and Send; = Si11+ Qr — O,
4. Type N: WA, = S; and Send.r = Sr4+1+ O¢

where Q; is the observed (correct) inflow during time ¢, O}
is the corresponding forecast inflow, Q, is the historic mean
flow for the month of time ¢, and Senq.; i the adjusted end-
of-period storage.

With the available water determined, release then takes
place guided by the rule curves as follows:

Case 1: For WA, > URC,, this is the excess operation
case, i.e., D, > D;

Dt/ = St + Qt - Et - URCm (4)
Y, =D — D, 5)

Case 2: For LRC,, < WA, < URC,, this is the normal op-
eration case, i.e., D; < D,

If WA, — D, < LRC,,, D, = WA, — LRC,, (8)

Case 3: For WA, < LRC,, this is the deficit operation case,
i.e., D; =0 (No water released), where URC,, is the up-
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per rule curve during month m (=1, 2, 3, ..., 12) of the
year; LRC,, is the lower rule curve during month m; Y,
is the excess water released during period ¢. In general,
t=12(y —1)+m for years y=1, 2, 3, ..., n, where n is
the number of years in the data record.

Once the simulation is complete, performance indices are
then evaluated as follows (McMahon and Adeloye, 2005):

i. Time-based Reliability (R;): R; = N;/N, where N; is
the total number of intervals out of N that the demand
was met.

N N
ii. Volume-based Reliability (Ry): Ry=>_D,/>. Dy,
=1 =1
VD, < D,

iii. Resilience: ¢ =1/ (%) = %; 0<¢ <1, where ¢ is
resilience, fs is number of continuous sequences of fail-
ure periods and fy is the total duration of the failures,
i.e. fy=N —N;.

Zfs (max(shk))

iv. Vulnerability: n = == - P~ where max(shy) is the
maximum water shortage in failure sequence k and Dy
corresponding demand.

v. Sustainability index (Sandoval-Solis et al., 2011): A =
(R:¢ (1 —1))*/3, where there are multiple users or sec-
tors, each of the above indices will be evaluated for each
sector and these can later be combined to determine a
weighted group (or global) index. This was done for the
sustainability index A using:

M
)\.G =ijkj (9)
Jj=1

where w; is a weight, given by (Sandoval-Soils et al.,
2011):
DS/

M .
> DS/
j=1

w; =

(10)

and Ag is the group sustainability; A; is the sustainabil-
ity for users category j; w; is the weighting for user j;
M is the total number of users sectors and DS/ is the
average annual water demand for users sector j.

3 Study area and data

The Ubonratana reservoir is the largest, single multi-purpose
reservoir in the upper Chi River Basin in north-eastern Thai-
land. The dam provides water for consumptive uses (domes-
tic, industrial, irrigation), Pong River in-stream flow augmen-
tation as well as flood control (EGAT, 2002). However, the
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Figure 2. Rule curves for Ubonratana reservoir.

water deliveries first pass through turbines for power gener-
ation (installed capacity = 25.2 MW) before being allocated
to the other uses. The release is prioritised in the order of
public (i.e. domestic and industrial), instream flow augmen-
tation and irrigation. The maximum storage capacity of the
reservoir is 2431 Mm? at elevation of 182 m above mean sea
level (ma.m.s.I). Minimum water level of the reservoir is
175ma.m.s.l. or 581.67 Mm?3 which has been prescribed for
the purpose of hydropower generation.

Data collected for the study included daily reservoir in-
flows, evaporation, area-height-storage relationship, weekly
and monthly water requirements and operating rule curves
for the reservoir. The observed monthly inflow from
April 1970 to March 2012 and rainfall from April 1981 to
March 2012 were provided by the Electricity Generating Au-
thority of Thailand (EGAT) and the Royal Irrigation Depart-
ment (RID). The analysis, however, used the overlapping pe-
riod of April 1982 to March 2012 (i.e. 360 months) for which
the rainfall and runoff data were complete. Data on histori-
cal water releases to the various sectors were also provided
by the RID. The gross water requirements for the analysis
period were 28 952 Mm3, i.e. average monthly of: 0.98 Mm?
for public (municipal and industrial) demands; 18.83 Mm3
for downstream requirements; and 60.6 Mm? for irrigation.
The original rule curves were also provided by the EGAT;
the improved versions of these (see Fig. 2) developed by Chi-
amsathit et al. (2014) were used in the current study.

4 Results and discussion

4.1 ANN inflow forecasts

Based on extensive testing involving the examination
of the auto-correlation function (acf — Fig. 3a), partial-
autocorrelation function (pcf — Fig. 3b) and cross-correlation
function (ccf - Fig. 3c), six input variables (i.e. current month
historic mean inflow, lagged inflows (r — 1, ¢t — 2, r — 3), and
lagged rainfall (r — 1, ¢ — 2)) were used for the ANN mod-
elling. The acf (Fig. 3a) shows infinite attenuation with only
the first three lags of inflow being significant. Additionally,
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Figure 3. Inflow (a) auto-correlation, (b) partial autocorrelation
functions, and (c) inflow-rainfall cross-correlation function for
Ubonratana system.

the ccf in Fig. 3c indicates that the first two lags of the rainfall
are significant. With these, the functional form of the forecast
model becomes:

Qt = f(Qtfl, Qt727 Qt73, Ri-1, Rtfz,Q) (11)

where Q; is the one-month ahead inflow forecast; Q;_1,
0;_» and Q,_z are lagged inflows of one-month, two-month
and three-month, respectively; R,_1 and R;_, are lagged
rainfall of one-month and two-month, respectively; and Q,
is historic mean inflow for the current month.

The ESR was used for the ANN training and for this the
360 months of data were split into three (90:5:5) for train-
ing, validation and testing, respectively. The number of hid-
den neurons was varied between 1 and 35 and based on the
R criterion the best architecture had 33 neurons in the hidden
layer. Indeed, the final model performed very well with the
R exceeding 0.9 in each of the training, validation and test-
ing. Figure 4a, b and ¢ compare the predicted and observed
inflow during training, validation and testing, respectively
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Figure 4. Comparing the 1-month ahead observed and forecast in-
flow during (a) training, (b) validation, and (c) testing.

and further confirm the good performance of the forecasting
model. The time series of the forecast inflows (April 1982 to
March 2012, i.e. 360 months) are also compared in Fig. 5 and
this together with the estimated Nash-Sutcliffe efficiency
(NSE) of 0.75 is further evidence of the efficacy of the fore-
casting model. Additionally, the fact that the NSE was higher
than zero is an indication that the model has been a better
predictor than the mean value of the observed time series.

4.2 Reservoir performance evaluation

The results of the performance evaluation are summarised in
Table 1. For convenience, the operating policy with Type A,
Type F, Type M and Type N are denoted by P-A, P-F, P-M
and P-N, respectively.

As seen in Table 1, in terms of the total amount of water
released, P-A, P-F and P-M were significantly better than P-
N, which is not surprising given that P-N did not have any
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Figure 5. Time series of 1-month ahead of observed and forecast inflows for the complete data record.

Table 1. Summary of evaluated reservoir performance indices for Ubonratana reservoir.

Policy  Water user Total water ~ Excursions  fq  fs Reliability (%) ¢ N Auser rG
shortage of Send, s
(Mm3)  below LRC
R; Ry
P-A Domestic 0.0 80 0 0 100.00 100.00 - 0.000 1.000 0.557
Downstream 0.5 1 1 99.72 99.99 1 0.026 0.990
Irrigation 309.4 15 3 9583 9858 0.200 0.626 0.415
P-F Domestic 0.0 140 0 0 100.00 100.00 - 0.000 1.000 0.655
Downstream 0.0 0 0 100.00 100.00 - 0.000 1.000
Irrigation 244.5 10 4 97.22 98.88 0.400 0591 0.542
P-M Domestic 0.0 160 0 0 100.00 100.00 - 0.000 1.000 0.464
Downstream 0.0 0 0 100.00 100.00 - 0.000 1.000
Irrigation 166.8 6 1 9833 9924 0.167 0.853 0.289
P-N Domestic 3.2 40 6 5 9833 99.09 0.833 1.000 0.000 0.543
Downstream 132.7 10 9 97.22 98.04 0.900 0.770 0.586
Irrigation 1062.6 28 15 9222 9513 0536 0.684 0.539

additional water from inflows. In terms of reliability (R, and
Ry), the P-F was marginally better than using P-A and sig-
nificantly better than P-N; P-F was, however, inferior to P-M.
A possible reason for this is that in some of the months, the
historic monthly mean and forecast inflows were higher than
the actual inflows, implying that more water will be released
in those months with P-M and P-F than with the other two
inflow situations. However, the net effect of such large re-
leases (based on the upwardly-biased inflow forecasts) is the
increased number of excursions of the end-of-period storage
(Send,;) into the region below the LRC as shown in Table 1
for both the P-F and P-M.

The other performance indices reported in Table 1 all re-
veal the superiority of P-F relative to the other inflow situ-
ations. For example, the group sustainability index for P-F
was the highest of all four; indeed, the same better perfor-
mance of P-F was recorded across all three (public, instream
and irrigation) demand sectors supplied by the reservoir. As
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expected, the conservative nature of P-N resulted in the least
number of excursions below the LRC. This is likely to benefit
the hydro-power generation potential of the reservoir albeit,
as revealed by this study, at the expense of its performance in
meeting the consumptive demands.

5 Conclusion

This study has developed MLP-ANN model to forecast one-
month-ahead inflow for the Ubonratana reservoir in north-
eastern Thailand. Extensive testing of the model showed that
it was able to provide inflow forecasts with reasonable ac-
curacy. The performance of the ANN forecasts was tested
against those of three other inflow scenarios and the reservoir
simulation results showed that the ANN forecasts produced
superior reservoir performance. The worst performing inflow
situation was when there was complete lack of knowledge
about the inflow and release decision was based on the start-
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ing storage alone. All this represents an objective demonstra-
tion of good inflow forecast knowledge for effective reservoir
operation.

Acknowledgements. This study formed part of the PhD research
undertaken by the first author with PhD Scholarship provided by
the Royal Thai Government. We also thank officials of EGAT for
providing the data and other information used for the study.

References

Adeloye, A. J. and De Munari, A.: Atrtificial neural network based
generalized storage-yield-reliability models using Levenberg-
Marquardt algorithm, J. Hydrol., 362, 215-230, 2006.

Chiamsathit, C., Adeloye, A. J., and Soundharajan, B.: Assessing
competing policies at Ubonratana reservoir, Thailand, Proceed-
ings ICE (Water Management), 167(WM10), 551-560, 2014.

Edossa, D. C. and Babel, M. S.: Forecasting Hydrological Droughts
Using Artificial Neural Network Modeling Technique, South
Africa: University of Pretoria, Proceedings of 16th SANCIAHS
National Hydrology Symposium, 1-3 October 2012, Pretoria,
2012.

Proc. IAHS, 373, 209-214, 2016

EGAT: Improved Rule Curve, Procedure of the Ubonratana reser-
voir operation: Electricity Generating Authority of Thailand
(EGAT) in the Ubonratana dam, EGAT, Khon Kaen, Thailand,
2002.

McMahon, T. A. and Adeloye, A. J.: Water resources yield, Water
Resources Publications, LLC, Colorado, USA, 2005.

Mohammadi, K., Eslami, H. R., and Dardashti, S. D.: Comparison
of Regression, ARIMA and ANN Models for Reservoir Inflow
Forecasting using Snowmelt Equivalent (a Case study of Karaj),
J. Agric. Sci. Technol., 7, 17-30, 2005.

Mulia, E. 1., Asano, T., and Tkalich, P.: Retrieval of missing val-
ues in water temperature series using a data-driven model, Earth
Science Informatics, 8, 787-798, 2015.

Sandoval-Soils, S., Mckinney, D. C., and Loucks, D. P.: Sustain-
ability index for water resources planning and management, Wa-
ter Resources Planning and Management, ASCE, 137, 381-389,
2011.

Shamseldin, A. Y.: Application of Neural Network Technique to
Rainfall-Runoff Modelling, Hydrol. J., 199, 272-294, 1997.

Zhang, G., Patuwo, B. E., and Hu, Y. M.: Forecasting with artificial
neural networks: The state of the art, Int. J. Forecasting, 14, 35—
62, 1998.

proc-iahs.net/373/209/2016/



	Abstract
	Introduction
	Methodology
	Artificial neural networks modelling
	Reservoir performance simulation

	Study area and data
	Results and discussion
	ANN inflow forecasts
	Reservoir performance evaluation

	Conclusion
	Acknowledgements
	References

