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Abstract. In this study, multi-layer perceptron (MLP) artificial neural networks have been applied to forecast

one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have

performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As

basis of comparison, four inflow situations were considered: (1) inflow known and assumed to be the historic

(Type A); (2) inflow known and assumed to be the forecast (Type F); (3) inflow known and assumed to be the

historic mean for month (Type M); and (4) inflow is unknown with release decision only conditioned on the

starting reservoir storage (Type N). Reservoir performance was summarised in terms of reliability, resilience,

vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while

Type N was the worst performing. This clearly demonstrates the importance of good inflow information for

effective reservoir operation.

1 Introduction

The planning of reservoirs for various purposes including

flood and drought control relies on the historic inflow data at

the reservoir site. Due to natural variability and other factors

(e.g. climate and land-use changes), however, the inflow situ-

ation when the reservoir is being operated will be different. It

is therefore important that reservoirs are properly operated so

that they continue to perform satisfactorily during changing

hydro-climatology.

Reservoir operation concerns taking decisions on water re-

lease from a reservoir based on the amount of water available

vis-à-vis the demand placed on the system. The available

water is the sum of starting period storage and the inflow

expected during the period. Consequently, effective reser-

voir operation relies on reliable forecast of the inflow into

the reservoir. Traditional forecasting methods using hydro-

logic, hydraulic and time-series models require specification

of the functional relationship of the model which can be

problematic (Zhang et al., 1998), which is why focus has re-

cently shifted to the use of data-driven techniques that do

not require knowledge of this functional relationship. In par-

ticular, artificial neural networks (ANN) have been widely

used to forecast reservoir inflows (see e.g. Edossa and Ba-

bel, 2012; Mohammadi et al., 2005) due to their effectiveness

and flexibility and have been proven to be superior to other

approaches such as regression-based and time series models.

The aim of this study is to apply multi-layer perceptron

(MLP)-ANN for the one-month-ahead inflow forecasting for

the Ubonratana reservoir, Thailand. To investigate the ef-

fect of the forecasts on reservoir operation performance, four

situations were considered for the one-month-ahead inflow:

(1) inflow is known and assumed to be the historic (Type A);

(2) inflow is known and assumed to be the ANN forecast

(Type F); (3) inflow is known and assumed to be the historic

average for the given month (Type M); and (4) inflow is not

known and the release decision is conditioned only on the

starting reservoir storage (Type N). Simulations of the Ubon-

ratana reservoir were then carried out with these alternative

inflow scenarios and the resulting reservoir performance was

summarised in terms of reliability, resilience, vulnerability

and sustainability.

In the next section, further details about the methodology

will be given. This is then followed by the presentation of the

case study. Next the results are presented and discussed and

finally, the main conclusions are given.
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2 Methodology

2.1 Artificial neural networks modelling

The theory and mathematical basis of ANN have been de-

scribed excellently by Shamseldin (1997). Essentially, the

structure of ANN comprises an input layer, an output layer

and one or more hidden layers as illustrated in Fig. 1. The

schematic in Fig. 1 has a single hidden layer which is gener-

ally sufficient to approximate any complex, non-linear func-

tion (Mulia et al., 2015). The layers contain nodes or neurons

which are connected by weights. Determining optimal values

for these weights and other parameters of the network is the

purpose of the ANN training exercise.

For a given problem, the number of nodes in the output

layer is fixed by the problem, e.g. in the current work, it is

the 1-month ahead inflow forecast. The input nodes must be

determined by the factors known to affect the output variable

and this has been achieved through an examination of the

cross-correlation matrix (see Adeloye and De Munari, 2006).

The number of neurons in the hidden layer is much more

difficult to arrive at and is normally determined as part of the

training by trial and error as described by Adeloye and De

Munari (2006).

Training is often improved through the use of early-stop-

rule (ESR) that helps to avoid over-fitting. In ESR, the avail-

able data are divided into three parts: (i) a training set, used

to determine the network weights and biases, (ii) a valida-

tion set, used to estimate the network performance and de-

cide when the training should be stopped, and (iii) a test set,

used to verify the effectiveness of the stopping criterion and

to estimate the expected performance in the future.

The tested ANN architectures (in trying to arrive at the

best value for the number of hidden neurons) were compared

using the correlation coefficient (R) criterion, i.e.:

R =

∑
ysimyobs−

∑
ysim

∑
yobs

N√(∑
ysim−

(
∑
ysim)2

N

)(∑
y2

obs−
(
∑
yobs)

2

N

) (1)

where ysim and yobs are respectively the simulated and ob-

served values of the output variable and N is the number of

exemplars used.

2.2 Reservoir performance simulation

Reservoir behaviour simulation employed the mass balance

equation (McMahon and Adeloye, 2005):

St+1 = St +Qt −D
′
t −Et (2)

subject to the operational policy for the reservoir, where St
and St+1 are respectively storage at the beginning and end of

time t ; Qt is the inflow to the reservoir during t ; Et is the

net evaporation (evaporation minus direct rainfall) in period
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Figure 1. Schematic of artificial neural network.

t ; D′t is the total water release towards meeting the target

demand of Dt during t .

As noted previously, the water available for allocation dur-

ing t , WAt , is:

WAt = St +Qt (3)

and assumes that the inflow is known at the start of the month

when making the release decision. In practice, however, this

is not the case and assumptions about the size of the antici-

pated inflow must be made. If the actual inflow turns out to

be exactly the same as the assumed inflow, then the end of

period storage will be exactly as given by Eq. (2). If, how-

ever, there is a discrepancy, the actual end of period storage

will be different from Eq. (2).

Let the actual end-of-period storage be Send,t , the relation-

ships between this and St+1 for each of the assumed inflow

knowledge assumptions become:

1. Type A: WAt = St +Qt and Send,t = St+1

2. Type F: WAt = St +Q
′
t and Send,t = St+1+Qt −Q

′
t

3. Type M: WAt = St +Qt and Send,t = St+1+Qt −Qt

4. Type N: WAt = St and Send,t = St+1+Qt

where Qt is the observed (correct) inflow during time t , Q′t
is the corresponding forecast inflow, Qt is the historic mean

flow for the month of time t , and Send,t is the adjusted end-

of-period storage.

With the available water determined, release then takes

place guided by the rule curves as follows:

Case 1: For WAt ≥ URCm this is the excess operation

case, i.e., D′t ≥Dt

D′t = St +Qt −Et −URCm (4)

Yt =D
′
t −Dt (5)

Case 2: For LRCm <WAt < URCm this is the normal op-

eration case, i.e., D′t ≤Dt

Yt = 0 (6)

If WAt −Dt ≥ LRCm,D
′
t =Dt (7)

If WAt −Dt < LRCm,D
′
t =WAt −LRCm (8)

Case 3: For WAt ≤ LRCm this is the deficit operation case,

i.e., D′t = 0 (No water released), where URCm is the up-

Proc. IAHS, 373, 209–214, 2016 proc-iahs.net/373/209/2016/



C. Chiamsathit et al.: Inflow forecasting using Artificial Neural Networks for reservoir operation 211

per rule curve during month m (= 1, 2, 3, . . . , 12) of the

year; LRCm is the lower rule curve during month m; Yt
is the excess water released during period t . In general,

t = 12(y− 1)+m for years y = 1, 2, 3, . . . , n, where n is

the number of years in the data record.

Once the simulation is complete, performance indices are

then evaluated as follows (McMahon and Adeloye, 2005):

i. Time-based Reliability (Rt ): Rt =Ns/N , where Ns is

the total number of intervals out of N that the demand

was met.

ii. Volume-based Reliability (Rv): Rv =

N∑
t=1

D′t/
N∑
t=1

Dt ,

∀D′t ≤Dt

iii. Resilience: φ = 1/
(
fd

fs

)
=

fs

fd
; 0< φ ≤ 1, where φ is

resilience, fs is number of continuous sequences of fail-

ure periods and fd is the total duration of the failures,

i.e. fd =N −Ns .

iv. Vulnerability: η =

∑fs
k=1(

max(shk )

Dk
)

fs
, where max(shk) is the

maximum water shortage in failure sequence k and Dk
corresponding demand.

v. Sustainability index (Sandoval-Solis et al., 2011): λ=

(Rtφ (1− η))1/3, where there are multiple users or sec-

tors, each of the above indices will be evaluated for each

sector and these can later be combined to determine a

weighted group (or global) index. This was done for the

sustainability index λ using:

λG =

M∑
j=1

wjλj (9)

where wj is a weight, given by (Sandoval-Soils et al.,

2011):

wj =
DSj

M∑
j=1

DSj
(10)

and λG is the group sustainability; λj is the sustainabil-

ity for users category j ; wj is the weighting for user j ;

M is the total number of users sectors and DSj is the

average annual water demand for users sector j .

3 Study area and data

The Ubonratana reservoir is the largest, single multi-purpose

reservoir in the upper Chi River Basin in north-eastern Thai-

land. The dam provides water for consumptive uses (domes-

tic, industrial, irrigation), Pong River in-stream flow augmen-

tation as well as flood control (EGAT, 2002). However, the
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Figure 2. Rule curves for Ubonratana reservoir.

water deliveries first pass through turbines for power gener-

ation (installed capacity= 25.2 MW) before being allocated

to the other uses. The release is prioritised in the order of

public (i.e. domestic and industrial), instream flow augmen-

tation and irrigation. The maximum storage capacity of the

reservoir is 2431 Mm3 at elevation of 182 m above mean sea

level (m a.m.s.l). Minimum water level of the reservoir is

175 m a.m.s.l. or 581.67 Mm3 which has been prescribed for

the purpose of hydropower generation.

Data collected for the study included daily reservoir in-

flows, evaporation, area-height-storage relationship, weekly

and monthly water requirements and operating rule curves

for the reservoir. The observed monthly inflow from

April 1970 to March 2012 and rainfall from April 1981 to

March 2012 were provided by the Electricity Generating Au-

thority of Thailand (EGAT) and the Royal Irrigation Depart-

ment (RID). The analysis, however, used the overlapping pe-

riod of April 1982 to March 2012 (i.e. 360 months) for which

the rainfall and runoff data were complete. Data on histori-

cal water releases to the various sectors were also provided

by the RID. The gross water requirements for the analysis

period were 28 952 Mm3, i.e. average monthly of: 0.98 Mm3

for public (municipal and industrial) demands; 18.83 Mm3

for downstream requirements; and 60.6 Mm3 for irrigation.

The original rule curves were also provided by the EGAT;

the improved versions of these (see Fig. 2) developed by Chi-

amsathit et al. (2014) were used in the current study.

4 Results and discussion

4.1 ANN inflow forecasts

Based on extensive testing involving the examination

of the auto-correlation function (acf – Fig. 3a), partial-

autocorrelation function (pcf – Fig. 3b) and cross-correlation

function (ccf – Fig. 3c), six input variables (i.e. current month

historic mean inflow, lagged inflows (t − 1, t − 2, t − 3), and

lagged rainfall (t − 1, t − 2)) were used for the ANN mod-

elling. The acf (Fig. 3a) shows infinite attenuation with only

the first three lags of inflow being significant. Additionally,

proc-iahs.net/373/209/2016/ Proc. IAHS, 373, 209–214, 2016
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Figure 3. Inflow (a) auto-correlation, (b) partial autocorrelation

functions, and (c) inflow-rainfall cross-correlation function for

Ubonratana system.

the ccf in Fig. 3c indicates that the first two lags of the rainfall

are significant. With these, the functional form of the forecast

model becomes:

Qt = f (Qt−1,Qt−2,Qt−3,Rt−1,Rt−2,Qt ) (11)

where Qt is the one-month ahead inflow forecast; Qt−1,

Qt−2 andQt−3 are lagged inflows of one-month, two-month

and three-month, respectively; Rt−1 and Rt−2 are lagged

rainfall of one-month and two-month, respectively; and Qt

is historic mean inflow for the current month.

The ESR was used for the ANN training and for this the

360 months of data were split into three (90 : 5 : 5) for train-

ing, validation and testing, respectively. The number of hid-

den neurons was varied between 1 and 35 and based on the

R criterion the best architecture had 33 neurons in the hidden

layer. Indeed, the final model performed very well with the

R exceeding 0.9 in each of the training, validation and test-

ing. Figure 4a, b and c compare the predicted and observed

inflow during training, validation and testing, respectively
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Figure 4. Comparing the 1-month ahead observed and forecast in-

flow during (a) training, (b) validation, and (c) testing.

and further confirm the good performance of the forecasting

model. The time series of the forecast inflows (April 1982 to

March 2012, i.e. 360 months) are also compared in Fig. 5 and

this together with the estimated Nash–Sutcliffe efficiency

(NSE) of 0.75 is further evidence of the efficacy of the fore-

casting model. Additionally, the fact that the NSE was higher

than zero is an indication that the model has been a better

predictor than the mean value of the observed time series.

4.2 Reservoir performance evaluation

The results of the performance evaluation are summarised in

Table 1. For convenience, the operating policy with Type A,

Type F, Type M and Type N are denoted by P-A, P-F, P-M

and P-N, respectively.

As seen in Table 1, in terms of the total amount of water

released, P-A, P-F and P-M were significantly better than P-

N, which is not surprising given that P-N did not have any
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Figure 5. Time series of 1-month ahead of observed and forecast inflows for the complete data record.

Table 1. Summary of evaluated reservoir performance indices for Ubonratana reservoir.

Policy Water user Total water Excursions fd fs Reliability (%) φ η λuser λG

shortage of Send,t

(Mm3) below LRC

Rt Rv

P-A Domestic 0.0 8.0 0 0 100.00 100.00 – 0.000 1.000 0.557

Downstream 0.5 1 1 99.72 99.99 1 0.026 0.990

Irrigation 309.4 15 3 95.83 98.58 0.200 0.626 0.415

P-F Domestic 0.0 14.0 0 0 100.00 100.00 – 0.000 1.000 0.655

Downstream 0.0 0 0 100.00 100.00 – 0.000 1.000

Irrigation 244.5 10 4 97.22 98.88 0.400 0.591 0.542

P-M Domestic 0.0 16.0 0 0 100.00 100.00 – 0.000 1.000 0.464

Downstream 0.0 0 0 100.00 100.00 – 0.000 1.000

Irrigation 166.8 6 1 98.33 99.24 0.167 0.853 0.289

P-N Domestic 3.2 4.0 6 5 98.33 99.09 0.833 1.000 0.000 0.543

Downstream 132.7 10 9 97.22 98.04 0.900 0.770 0.586

Irrigation 1062.6 28 15 92.22 95.13 0.536 0.684 0.539

additional water from inflows. In terms of reliability (Rt and

Rv), the P-F was marginally better than using P-A and sig-

nificantly better than P-N; P-F was, however, inferior to P-M.

A possible reason for this is that in some of the months, the

historic monthly mean and forecast inflows were higher than

the actual inflows, implying that more water will be released

in those months with P-M and P-F than with the other two

inflow situations. However, the net effect of such large re-

leases (based on the upwardly-biased inflow forecasts) is the

increased number of excursions of the end-of-period storage

(Send,t ) into the region below the LRC as shown in Table 1

for both the P-F and P-M.

The other performance indices reported in Table 1 all re-

veal the superiority of P-F relative to the other inflow situ-

ations. For example, the group sustainability index for P-F

was the highest of all four; indeed, the same better perfor-

mance of P-F was recorded across all three (public, instream

and irrigation) demand sectors supplied by the reservoir. As

expected, the conservative nature of P-N resulted in the least

number of excursions below the LRC. This is likely to benefit

the hydro-power generation potential of the reservoir albeit,

as revealed by this study, at the expense of its performance in

meeting the consumptive demands.

5 Conclusion

This study has developed MLP-ANN model to forecast one-

month-ahead inflow for the Ubonratana reservoir in north-

eastern Thailand. Extensive testing of the model showed that

it was able to provide inflow forecasts with reasonable ac-

curacy. The performance of the ANN forecasts was tested

against those of three other inflow scenarios and the reservoir

simulation results showed that the ANN forecasts produced

superior reservoir performance. The worst performing inflow

situation was when there was complete lack of knowledge

about the inflow and release decision was based on the start-

proc-iahs.net/373/209/2016/ Proc. IAHS, 373, 209–214, 2016
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ing storage alone. All this represents an objective demonstra-

tion of good inflow forecast knowledge for effective reservoir

operation.
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