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Long term prediction of flood occurrence
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Abstract. How long a river remembers its past is still an open question. Perturbations occurring in large catch-

ments may impact the flow regime for several weeks and months, therefore providing a physical explanation for

the occasional tendency of floods to occur in clusters. The research question explored in this paper may be stated

as follows: can higher than usual river discharges in the low flow season be associated to a higher probability

of floods in the subsequent high flow season? The physical explanation for such association may be related to

the presence of higher soil moisture storage at the beginning of the high flow season, which may induce lower

infiltration rates and therefore higher river runoff. Another possible explanation is persistence of climate, due to

presence of long-term properties in atmospheric circulation. We focus on the Po River at Pontelagoscuro, whose

catchment area amounts to 71 000 km2. We look at the stochastic connection between average river flows in the

pre-flood season and the peak flows in the flood season by using a bivariate probability distribution. We found

that the shape of the flood frequency distribution is significantly impacted by the river flow regime in the low

flow season. The proposed technique, which can be classified as a data assimilation approach, may allow one to

reduce the uncertainty associated to the estimation of the flood probability.

1 Introduction

Perturbations occurring in large catchments may impact the

flow regime for several weeks and months, therefore pro-

viding a physical explanation for the occasional tendency of

floods to occur in clusters (Montanari, 2012). In the Po river,

for instance, it has been observed that some flood events

have been preceded by long lasting average flows. The phys-

ical explanation for such association may be related to the

presence of higher than usual soil moisture storage, which

may induce lower infiltration rates and therefore higher river

runoff. Another possible explanation is persistence of cli-

mate, due to presence of long-term properties in atmospheric

circulation.

It is well known that river flows are affected by forms of

persistence that are not fully understood yet (O’Connell et

al., 2015). These are referred to as the “Hurst Phenomenon”,

or the “Hurst Effect”. The Hurst Effect has been physically

explained as an implication of the principle of maximum en-

tropy (Koutsoyiannis et al., 2011; Koutsoyiannis, 2014) and

implies the presence of long-term cycles over a multitude of

time scales. Therefore, the presence of long memory is con-

nected to the possible occurrence of long-term cycles that

imply the persistence of high and extreme flows.

With the idea that extreme floods may be induced by long

term stress, rather than a short sequence of extreme rain-

fall, this paper explores the following research question: can

higher than usual river discharges in the low flow season be

associated to a higher probability of floods in the subsequent

high flow season? An application in the Po River is carried

out in order to set up a methodology to update the uncertainty

associated to the estimation of flood occurrence probability.
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Figure 1. Po River Basin. Location (left), drainage network and closure section at Pontelagoscuro (right).

2 Study site and data sources

The Po River whose catchment has an area of about

71 000 km2 is the longest river entirely flowing in the Ital-

ian Peninsula (Fig. 1). The average annual precipitation in

the catchment is 78 km3, of which 60 % reaches the closure

river cross-section at Pontelagoscuro where the mean annual

flow is about 1470 m3 s−1. An intense exploitation of water

resources for irrigation, hydro-power production, civil and

industrial use is found in the catchment. Even though the sit-

uation is currently sustainable on average, it might be prob-

lematic during drought periods (Montanari, 2012). The hy-

drological behavior of the Po River is described in detail

in recent studies (Zanchettin et al., 2008; Montanari, 2012;

Zampieri et al., 2015).

Daily discharge time series for the Po River Basin in Pon-

telagoscuro were analyzed in this study. The observation pe-

riod of the complete series was 1920–2009. The discharge

pattern shows a typical pluvial regime and thus a strong sea-

sonality with two flood seasons in spring and autumn (Fig. 2).

3 Bivariate probability distribution fitting

In order to look at the stochastic connection between the av-

erage river flows in the pre-flood season and the peak flows

in the flood season a bivariate probability distribution func-

tion is fitted to observed data sets. In what follows, random

variables and their outcomes are identified with bold and un-

bold characters, respectively. The yearly random variables

included in the analysis were:

– Monthly mean flow in the pre-flood season, Qm.

– Peak flow in the flood season, Qp.

First, the time series Qm(t) and Qp(t) with sample size n,

where n is the number of years in the observation period,

are extracted from the observed data sets. Then, the Nor-

mal Quantile Transform (NQT) is applied in order to make

their marginal probability distributions Gaussian, therefore

obtaining the normalized observations NQm(t) and NQp(t).

Figure 2. Daily mean value µQ (m3 s−1) and daily standard de-

viation σQ (m3 s−1) of the daily flows in the observation period

(1920–2009) at Pontelagoscuro.

A detailed description of the application of the NQT in hy-

drological studies can be found in the literature (e.g. Moran,

1970; Montanari and Brath, 2004; Montanari, 2005; Monta-

nari and Grossi, 2008; Bogner et al., 2012).

Finally, a bivariate Gaussian distribution function between

both canonical Gaussian random variables is fitted. The pa-

rameters of the distribution are the mean µ(NQm)= 0 and

µ(NQp)= 0 and the standard deviation σ (NQm)= 1 and

σ (NQp)= 1 of the normalized series, and the Pearson’s

cross correlation coefficient between both normalized series,

ρ(NQm,NQp). In the presence of dependence between NQm

and NQp, the correlation coefficient will be significantly dif-

ferent from zero. The bivariate Gaussian distribution implies

that, for an arbitrary (observed) NQm(t), the probability dis-

tribution of NQp is Gaussian, with parameters (Eqs. 1, 2):

µ
(
NQp

)
= ρ

(
NQm,NQp

)
·NQm(t), (1)

σ
(
NQp

)
=

(
1− ρ2

(
NQm,NQp

))0.5

. (2)

Then, by taking the inverse of the NQT one can infer the

updated probability distribution ofQp conditioned to the ob-
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Figure 3. Probability distribution functions of the normalized dependent variable (NQp) conditioned to the occurrence of the 70th, 80th and

95th percentiles of the normalized variables in the pre-flood season.

served outcomeQm(t). Therefore, once the parameters of the

distribution are computed, the probability distribution of the

peak flow can be updated after observing the average flow in

the considered low flow season.

The following two main assumptions are applied in this

study. (1) The peak flows season covers the months of Octo-

ber and November in the Po River. Thus, the low flow season

is assessed in the previous months to the peak flows season

(July–September). Nevertheless, the methodology allows the

user to select the seasons arbitrarily so that it can be applied

to any other study site or hydrological regime. (2) For the

sake of comparison, peak flows can be adequately modeled

through the EV1 distribution.

In order to infer the actual impact of the dependence be-

tween peak flows and average flow in the low flow season, the

unconditioned flood frequency distribution and the updated

distributions inferred for several levels higher-than-average

values of mean flow (e.g. 70, 80, and 95 % quantiles) in the

pre-flood season were compared.

4 Results

The correlation coefficient between NQp and NQm was cal-

culated by considering different observation periods for Qm.

In detail, we assumed that Qm is given by the monthly mean

flow in each of the 9 months preceding the high flow season

(from September to January). Table 1 shows the decrease in

the correlation coefficient as the considered low flow period

moves backward, as one would expect.

Table 1. Correlation coefficient between NQp and NQm for varying

low flow season in the abscissa.

Month ρ(NQm,NQp)

September 0.24

August 0.18

July 0.06

June 0.02

May −0.06

April −0.13

March −0.18

February −0.04

January −0.07

The effect of the identified dependence on peak flow esti-

mation, for an assigned return period, is shown in Fig. 3 for

three different levels of mean flow (70, 80, and 95 % quan-

tiles) in the considered pre-flood season. The probability dis-

tribution functions (pdf) of the normalized observed variable,

NQp, with mean zero and standard deviation 1 is also dis-

played for the sake of comparison and denoted as uncondi-

tioned in Fig. 3. We can appreciate that the higher the cross

correlation value, the lower the variability in the distribution

of the normalized dependent variable and the higher the mean

value. For example, when estimating the probability distribu-

tion of NQp conditioned to the occurrence of the 95th quan-

tile value in the normalized mean flow in September, the pdf

is centered around a mean vaue of 0.4 and presents a standard

deviation of 0.97. In contrast, if one attempts to estimate the

probability distribution of NQp conditioned to the occurrence
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Figure 4. Peak flows in the flood season (October–November) vs

return period modeled through the EV1 distribution function.

of the 95th quantile of the normalized mean flow in June, no

significant change is found in the estimate with respect to the

unconditioned distribution. In fact, the resulting probability

density function (pdf) for NQp is centered around a mean

value of 0.03 with a standard deviation of 0.998. In what fol-

lows, September was selected as the pre-flood season in the

study site.

Once a pre-flood season was identified it is possible to

update the flood frequency distribution after the observation

of Qm(t). Figure 4 shows the comparison between the un-

conditioned flood frequency distribution and the simulated

updated distributions when the flow in September is higher

than usual (70, 80, and 95 % quantile). For example, the un-

conditioned expected flood for a return period of 200 years,

12 507 m3 s−1, increases up to 13 790 m3 s−1 when the mean

flow in September corresponds to its 95 % quantile).

5 Conclusions

We found that the peak flow of the Po River is dependent

on the average flow of the pre-flood season. Thus, we con-

clude that it is possible to update the flood frequency distri-

bution basing on discharge observations during the low flow

season. To this end, we use a bivariate Gaussian distribution

function to model the above dependence. The methodology

herein proposed can be applied to any other study site once

the flood season is identified and the parameters of the bivari-

ate distribution confirm the presence of the above stochastic

dependence.

Several possible physical explanation can be postulated for

the sensitivity of the peak flow to the mean discharge in the

preceding low flow season, such as the impact of the catch-

ment storage or soil moisture, which in turn impact the for-

mation of net rainfall, and the existence of memory in the

weather. Current research is focusing on gaining a better

understanding of the processes leading to the formation of

the flood flows and in particular the related weather dynam-

ics. Furthermore, we are carrying out experiments on several

other rivers in the attempt to relate the above dependence to

catchment properties.

Acknowledgements. Cristina Aguilar acknowledges funding by

the Jose Castillejo Programme (Grant number CAS14/00432) and

Juan de la Cierva Fellowship Programme (Grant number JCI-2012-

12802) of the Spanish Ministry of Economy and Competitiveness.

The present work was (partially) developed within the framework of

the Panta Rhei Research Initiative of the International Association

of Hydrological Sciences (IAHS).

References

Bogner, K., Pappenberger, F., and Cloke, H. L.: Technical Note:

The normal quantile transformation and its application in a flood

forecasting system, Hydrol. Earth Syst. Sci., 16, 1085–1094,

doi:10.5194/hess-16-1085-2012, 2012.

Koutsoyiannis, D.: Entropy: from thermodynamics to hydrology,

Entropy, 16, 1287–1314, doi:10.3390/e16031287, 2014.

Koutsoyiannis, D., Paschalis, A., and Theodoratos, N.:

Two-dimensional Hurst–Kolmogorov process and its

application to rainfall fields, J. Hydrol., 398, 91–100,

doi:10.1016/j.jhydrol.2010.12.012, 2011.

Montanari, A.: Deseasonalisation of hydrological time series

through the normal quantile transform, J. Hydrol., 313, 274–282,

doi:10.1016/j.jhydrol.2005.03.008, 2005.

Montanari, A.: Hydrology of the Po River: looking for changing

patterns in river discharge, Hydrol. Earth Syst. Sci., 16, 3739–

3747, doi:10.5194/hess-16-3739-2012, 2012.

Montanari, A. and Brath, A.: A stochastic approach for assess-

ing the uncertainty of rainfall-runoff simulations, Water Resour.

Res., 40, W01106, doi:10.1029/2003WR002540, 2004.

Montanari, A. and Grossi, G.: Estimating the uncertainty of hydro-

logical forecasts: A statistical approach, Water Resour. Res., 44,

W00B08, doi:10.1029/2008WR006897, 2008.

Moran, P.: Simulation and Evaluation of Complex Water

Systems Operations, Water Resour. Res., 6, 1737–1742,

doi:10.1029/WR006i006p01737, 1970.

O’Connell, P. E., Koutsoyiannis, D., Lins, H. F., Markonis,

Y., Montanari, A., and Cohn, T.: The scientific legacy

of Harold Edwin Hurst (1880–1978), Hydrol. Sci. J.,

doi:10.1080/02626667.2015.1125998, online first, 2015.

Zampieri, M., Scoccimarro, E., Gualdi, S., and Navarra, A.:

Observed shift towards earlier spring discharge in the

main Alpine rivers, Sci. Total Environ., 503–504, 222–232,

doi:10.1016/j.scitotenv.2014.06.036, 2015.

Zanchettin, D., Traverso, P., and Tomasino, M.: Po River dis-

charge: a preliminary analysis of a 200-year time series, Climatic

Change, 88, 411–433, doi:10.1007/s10584-008-9395-z, 2008.

Proc. IAHS, 373, 189–192, 2016 proc-iahs.net/373/189/2016/

http://dx.doi.org/10.5194/hess-16-1085-2012
http://dx.doi.org/10.3390/e16031287
http://dx.doi.org/10.1016/j.jhydrol.2010.12.012
http://dx.doi.org/10.1016/j.jhydrol.2005.03.008
http://dx.doi.org/10.5194/hess-16-3739-2012
http://dx.doi.org/10.1029/2003WR002540
http://dx.doi.org/10.1029/2008WR006897
http://dx.doi.org/10.1029/WR006i006p01737
http://dx.doi.org/10.1080/02626667.2015.1125998
http://dx.doi.org/10.1016/j.scitotenv.2014.06.036
http://dx.doi.org/10.1007/s10584-008-9395-z

	Abstract
	Introduction
	Study site and data sources
	Bivariate probability distribution fitting
	Results
	Conclusions
	Acknowledgements
	References

