
Proc. IAHS, 373, 175–178, 2016

proc-iahs.net/373/175/2016/

doi:10.5194/piahs-373-175-2016

© Author(s) 2016. CC Attribution 3.0 License.

Open Access

T
h
e

s
p
a
tia

l
d
im

e
n
s
io

n
s

o
f
w

a
te

r
m

a
n
a
g
e
m

e
n
t
–

R
e
d
is

trib
u
tio

n
o
f
b
e
n
e
fi
ts

a
n
d

ris
k
s

An update on multivariate return periods in hydrology

Benedikt Gräler1, Andrea Petroselli2, Salvatore Grimaldi3, Bernard De Baets4, and Niko Verhoest5

1Institute of Hydrology, Ruhr University Bochum, Bochum, Germany
2Dipartimento di scienze agrarie e forestali (DAFNE Department), University of Tuscia, Tuscia, Italy

3Dipartimento per la innovazione nei sistemi biologici agroalimentari e forestali (DIBAF Department),

University of Tuscia, Tuscia, Italy
4Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium

5Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

Correspondence to: Benedikt Gräler (benedikt.graeler@rub.de)

Published: 12 May 2016

Abstract. Many hydrological studies are devoted to the identification of events that are expected to occur on

average within a certain time span. While this topic is well established in the univariate case, recent advances

focus on a multivariate characterization of events based on copulas. Following a previous study, we show how

the definition of the survival Kendall return period fits into the set of multivariate return periods.

Moreover, we preliminary investigate the ability of the multivariate return period definitions to select maximal

events from a time series. Starting from a rich simulated data set, we show how similar the selection of events

from a data set is. It can be deduced from the study and theoretically underpinned that the strength of correlation

in the sample influences the differences between the selection of maximal events.

1 Introduction

Studying extremes in hydrological multivariate time series

often aims at getting an estimate of the size of events to be

expected in a period of 10, 50 or 100 years. This information

is relevant for the construction of many hydrological struc-

tures such as dams and dykes. As most of these natural events

are characterized by several variables (e.g. peak discharge,

volume, duration, . . . ) and several locations, it is important

to understand their dependence structure and which constel-

lations result in an extreme event. Copulas allow to flexibly

model the dependence between the variables and add differ-

ent marginal distribution functions to build a probabilistic

multivariate model. The natural ordering in univariate time

series does not extend to the multivariate case calling for dif-

ferent tools to identify multivariate extremes.

In a previous study (Gräler et al., 2013), the practical im-

pact of different bivariate multivariate return period defini-

tions has been studied based on a simulated data set. Mean-

while, an additional approach, the survival Kendall return pe-

riod (SKRP), has been developed (Salvadori et al., 2013).

Using the same data as before, the SKRP is calculated and

related to the previously studied return periods (AND, OR

and Kendall return period).

Currently, multivariate maxima are often selected based

on a single driving variable (e.g. peak discharge) and the as-

sociated variables (e.g. volume and duration) are studied in

a multivariate setting. However, this does not a priori reflect

the joint extreme characteristic that is the actual focus of such

a study. Different notions of maximality can be defined fol-

lowing the above return period definitions. These allow to

calculate the empirical joint extremeness and to select the

maxima of multivariate time series.

In this paper, we will only briefly quote the key concepts.

The interested reader is referred to the predecessor of this

paper, Gräler et al. (2013), for further details. The follow-

ing section recalls the definitions of the different multivari-

ate return periods under study and puts them into relation. In

Sect. 3, the different maxima selection regimes are presented

and their effect is studied. Section 4 provides a discussion

and conclusions.
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2 Multivariate return periods

The driving tool underlying the multivariate return period

definitions are copulas. Copulas are multivariate distribution

functions defined on the unit hypercube. Based on Sklar’s

Theorem (Sklar, 1959), they combine marginal distribution

functions F1, . . . , Fd into multivariate distributions H via

H (x1, . . .,xd)= C(F1(x1), . . .,Fd(xd)) and solely determine

the entire dependence structure. For a detailed introduc-

tion, see e.g. the book by Nelsen (2006). Going from uni-

variate to multivariate extremes is not immediate. One ma-

jor constrain is the lack of a natural ordering for problems

of dimension d ≥ 2. Typical definitions of the multivari-

ate joint return periods include the OR case corresponding

to P (X1 > x1, . . .,Xd > xd) and the AND case defined for

P (X1 > x1∧. . .∧Xd > xd). The Kendall return period (KRP)

introduced by Salvadori et al. (2011) is an approach that

shares a unique property with the univariate return periods:

the critical layer separating safe from dangerous events is

unique for every design return period. This is not the case

for the OR and AND approaches where different regions of

safe and dangerous events exist for the same return period.

The basis of the Kendall return period, the Kendall distribu-

tion function is the distribution function of the copula’s mass

below its level curves.

Salvadori et al. (2013) present the survival Kendall return

period (SKRP) to overcome limitations of the Kendall re-

turn period (KRP) described in Salvadori et al. (2011). The

drawback of the latter is its unboundedness. The critical layer

splits the region into safe and dangerous events in a way such

that one of the margins might tend to infinity (even though

with very small probability). This limitation is overcome by

the SKRP, as the critical layer is nicely bounded, as for the

OR return period, but every point on the critical layer exhibits

the same return period, as in the Kendall scenario. In a way,

the SKRP combines the best of both worlds. Its mathematical

definition reads

TSKRP =
µ

1− K̄(t)

with K̄ the survival Kendall distribution function given by

K̄(t)= P
(
F̄ (x1, . . .,xd)≥ t

)
= P

(
Ĉ(F̄1(x1), . . ., F̄d(xd))≥ t

)
and Ĉ the survival copula and F̄i the marginal survival dis-

tribution functions. See Salvadori et al. (2013) for the full

details.

In order to extend our previous study, we use the same data

(simulated using the COSMO4SUB model, Grimaldi et al.,

2012, compare Sect. 4 in Gräler et al., 2013) and adopt the

same parametrization as in Gräler et al., 2013 to also calcu-

late the SKRP for the bivariate approach. Higher dimensional

approaches are out of the scope of this follow-up paper. The

peak discharges Qp are said to follow a Weibull distribution
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Figure 1. Comparison of different MRP definitions for a return pe-

riod of 10 years (compare Figure 6 in Gräler et al., 2013).

while the associated volumes follow an exponential distribu-

tion. Recall that the selection of the annual maxima was done

based on the peak discharges and the volumes are the ones

corresponding to the same event, but as such not necessarily

the largest one in the respective year.

Figure 1 depicts the four different multivariate return pe-

riod (MRP) definitions. All points indicate the most likely

bivariate event on the respective critical layers. It is impor-

tant to notice that also an ensemble approach could have been

taken, where a series of design events is obtained.

3 Maxima selection

In the previous section and study, the annual maxima were

selected based on the maximum peak discharge and the vol-

umes were only the corresponding, but not necessarily maxi-

mal ones. An alternate approach can be taken either based on

the empirical copula or the adoption of multivariate distribu-

tions. For these, the same MRP definitions can be applied as

quoted above and the largest values per year can be selected.

In the following, we will follow this avenue and investigate

the differences between these approaches where the copula

C might be the empirical copula or an appropriate family.

For ease of notation, we will stick to bivariate events. We

say that an event (x1,x2) is OR-maximal, if

F (x1,x2)= C(F1(x1),F2(x2))≥ C(F1(y1),F2(y2))

= F (y1,y2)

for all (y1,y2) in the same temporal window (i.e. year) as

(x1,x2). Analogously, we say that an event (x1,x2) is AND-

maximal, if

1−P (X1 > x1,X2 > x2)

= F1(x1)+F2(x2)−C(F1(x1),F2(x2))

≥ F1(y1)+F2(y2)−C(F1(y1),F2(y2))

for all (y1,y2) in the same temporal window (i.e. year) as

(x1,x2). Adopting also the Kendall and survival Kendall re-

turn period definitions, we say that an event is Kendall-
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Figure 2. Comparison of the annual maximum value for the four different definitions. Left: based on 500 years of simulated rainfall data.

Right: moderately correlated sample of a Gumbel copula.

maximal, if

K(C(F1(x1),F2(x2)))≥K(C(F1(y1),F2(y2)))

for all (y1,y2) in the same temporal window (i.e. year) as

(x1,x2) where K is the Kendall distribution function cor-

responding to C. Finally, we call an event survival Kendall

maximal, if

K̄(C̄(1−F1(x1),1−F2(x2)))≥ K̄(C̄(1−F1(y1),1−F2(y2)))

for all (y1,y2) in the same temporal window (i.e. year) as

(x1,x2) where K̄ is the survival Kendall distribution function

with corresponding survival copula C̄.

To study the impact of the aforementioned definitions, we

use a second run of 500 simulated years of 5.625 min resolu-

tion discharge data that were aggregated to separate rainfall

events. This is different from the previous data set where only

annual maxima have been used. This second data set contains

12 466 events. In order to reduce the effect of autocorrelation

within this simulation, we only consider a random subset of

50 % of the data (autocorrelation plots indicate an uncorre-

lated time series, not shown here). We do not fit any para-

metric family, and solely use the empirical definitions of the

above equations.

In our simulated data set, the largest event in a year often

is the same for all four definitions. This is not too surpris-

ing, considering that there are on average less than 25 rain-

fall events in each year. What remains different, is how ex-

treme the event is for each of the four notions. The left plot

of Fig. 2 illustrates the relationship between the annual max-

imum value of the different definitions for the studied data

set.

Identifying the single rainfall events and looking into the

marginal distributions, visually reveals identical histograms

for peak discharge as well as for volume for the four bivari-

ate and respective univariate maxima selections. An overlay

shows only very little variations for discharge values and vol-

umes. Larger values of the margins tend to even better coin-

cide.

As this data set follows a very strong correlation, we draw

a sample of a Gumbel copula with a moderate Kendall’s tau

of 0.6, assign it to the same temporal structure as our previ-

ous data set and repeat the above analysis. The right plot of

Fig. 2 is based on the copula sample and shows a larger vari-

ation in the annual maximum values for the four approaches.

As in the left plot, the OR and KRP as well as the AND

and SKRP approaches seem to be much more alike than the

other pairwise combinations. The selected margins show a

little more variability, but the histograms remain hardly dis-

tinguishable. All the variation appears in the center of the

distribution.

4 Discussion and conclusion

The SKRP yields the most reliable separation into safe (sub-

critical) and dangerous (super-critical) events. Nevertheless,

the selection of a single design event, as often required by

subsequent studies, remains an open question. Here, we se-

lected the most probable bivariate event, but any event along

the critical layer separates the sub- and super-critical regions.

The differences between the four definitions of maximal-

ity were minor in the simulated rainfall time series, but this

is also due to the very strong correlation. This strong depen-

dence causes the copula to be close to the upper Fréchet-

Hoeffding bound where all four definitions coincide. If all

points lie close to the diagonal, there is no difference whether

the critical layer follows the OR definition (enclosing the

lower left rectangle), the SKRP definition (very sharply bend

contour lines enclosing the lower left region), the KRP def-

inition (very sharply bend contour lines excluding the top

right region) or the AND definition (excluding the top right

rectangle).
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The temporal structure was not changed, only the depen-

dence structure to investigate the effect. A less dry study area

with much more rainfall events in a year will further influ-

ence the selection. However, the large extreme values appear

to be extreme in each of the definitions.

Here we use the raw definitions of multivariate return pe-

riods, but an alternative would be to investigate derived mea-

sures. Requena et al. (2013) developed the routed return pe-

riod where the water levels in a dam are used to characterize

the return period of bivariate rainfall events. This idea could

also be used in the same manner as presented in this paper to

initially select the largest events from the original time series.

The investigated data set features a very long time series.

Shorter time series might be more sensitive to changes of

the maximum selection regime applied, as few events might

have a strong influence on the selection of the marginal dis-

tributions. The influence of these outer properties needs to be

further investigated. An avenue of future research is to con-

sider the joint extremeness for the selection of extremes to be

fed into a peak over threshold approach.
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