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Abstract. Spring flooding in the Red River basin is a recurrent issue in the Province of Manitoba, Canada. There

have been a number of flood events in recent years and climate change has been suggested as a potential cause.

This paper employs a relatively simple model for predicting changes in the frequency distribution of annual

spring peak discharge of the Red River as a response to increased GHG concentrations. A regression model is

used to predict spring peak flow from antecedent precipitation in the previous fall, winter snow accumulation,

and spring precipitation. Data from the Coupled Model Intercomparison Project – Phase 5 (CMIP5) are used to

estimate changes in the predictor variables and this information is then employed to derive flood distributions

for future climate conditions. Most climate models predict increased precipitation during winter months but this

trend is partly offset by a shorter snow accumulation period and higher winter evaporation rates. The means and

medians of an ensemble of 16 climate models do not suggest a particular trend toward more or less frequent

floods of the Red River. However, the ensemble range is relatively large, highlighting the difficulties involved in

estimating changes in extreme events.

1 Introduction

Climate change impacts river flows around the world and

is often being linked to severe flood events. The Canadian

Prairie region, which includes the provinces of Manitoba,

Saskatchewan, and Alberta, has in recent years experienced

several major floods that have had a severe impact on people

and infrastructure. Many flood events are caused by snow

melt in the spring, occasionally exacerbated by rain during

the melt period. A significant event on the Red River, dubbed

the “flood of the century”, happened in 1997 and affected

large parts of Manitoba, North Dakota, and Minnesota. The

1997 Red River flood occurred as a result of an extraordi-

narily large snow pack in the basin. Another major event in

Manitoba, the 2011 Assiniboine flood, was also the result of

a larger-than-normal snow pack.

It is important to gain a better understanding of how cli-

mate change may modify flood regimes and extreme events

in particular. Such knowledge is critical for the design of

new flood protection infrastructure and for flood plain man-

agement. Because climate change affects different regions

in different ways, such studies must focus on specific river

basins. The present study attempts to estimate the impact

of climate change on the distribution of spring floods in the

Red River basin. Most climate change research focuses on

changes in average conditions; projecting changes in the dis-

tribution of extreme events is notoriously difficult, due in

part to the large natural variability of extreme events, and to

the difficulty of climate models to realistically simulate ex-

treme weather events. A relatively limited amount of work

has been done to assess the impact of climate change on

the flood regime of the Red River. One such study was con-

ducted by Warkentin (1999) who investigated the potential

impact of climate change on Red River floods, using data

from a single climate model along with a Monte Carlo simu-

lation approach. The present study builds and expands upon

Warkentin’s work. More specifically, we employ more recent

data from several climate models and propose an analytical

method that does not require simulation to quantify potential

changes in the frequency of floods. The primary aim of the

paper is to assess the implications of climate change on future

flood risk. Such information is important for design of flood

protection and for the development of adaptation policies.
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Figure 1. Red River Basin.

2 Methodology

2.1 Study area and data

Most of the Red River basin is located in North Dakota and

Minnesota, with only about 15 % of the basin located in

Canada, see Fig. 1. The river flows north and crosses the

Canada-US border at the city of Emerson. The basin area

south of the border is roughly 100 000 km2, and the river is

over 800 km long. Most of the basin lies in a glacial lake

bed with extremely low relief. This implies that when large

flood events occur, they tend to inundate large areas. There

have been many historical incidents of flooding in the basin.

The most severe event in the past century was the 1997 Red

River flood that cost more than CAD 700 million in flood

protection measures and damages in Manitoba alone, as well

as loss of several lives.. The 1997-event effectively created a

large lake, nicknamed the “Red Sea” by locals, with an esti-

mated area of almost 2000 km2. Five percent of Manitoba’s

total farmland was inundated.

The longest continuous record of natural Red River flows

is from the hydrometric station at Emerson. The record cov-

ers the period from 1913 to present. In most years, the max-

imum annual flow occurs in April to early May as a result

of snow melt. The primary factors impacting spring floods

in the basin are soil moisture at the time of freeze-up in the

previous fall, the accumulation of snow during the winter,

and rainfall during the melt period. Also of potential impor-

tance is the temperature during the melt period and the tim-

ing of peak flow in the various tributaries. Warkentin (1999)

compiled a set of variables representative of these factors and

demonstrated their relationship with spring peak flow at the

James Avenue station in Winnipeg. The variables are:

– API (Antecedent Precipitation Index): index of soil

moisture at freeze-up during the previous fall, based on

weighted basin precipitation from May to September.

Table 1. Descriptive statistics of the data set used for the regression

analysis.

API MI WP SP TF Q

Mean 2.36 7.51 3.51 0.69 48.15 886.20

Standard Deviation 0.50 3.07 1.11 0.90 16.99 654.22

Range 2.50 15.30 6.75 4.06 69.00 3543.00

Minimum 1.02 2.70 1.85 0.00 12.00 107.00

Maximum 3.52 18.00 8.60 4.06 81.00 3650.00

API = Antecedent Precipitation Index, MI =Melt Index, WP =Winter Precipitation, SP =

Spring Precipitation, TF = Timing Factor. Q = spring peak flow of the Red River at Emerson.

– WP (Winter Precipitation): total average basin precipi-

tation from 1 November of the previous year to the start

of active melt (inches).

– SP (Spring Precipitation): total basin precipitation from

the start of active spring melt to the date of the spring

crest at Emerson (inches).

– MI (Melt Index): average degree-days per day at Grand

Forks, North Dakota, during the active melt period (in

Fahrenheit).

– TF (Timing Factor): an index of the south-north time

phasing of the runoff based on the percentage of trib-

utary peaks experienced on the date of the main stem

peak at specific points from Halstad to Winnipeg.

Table 1 gives some descriptive statistics of these variables

which are available from 1940 to 1999. Warkentin (1999)

considered information prior to 1940 to be insufficient for

accurate assessment of the variables and the data set has

not been updated since 1999. Although more data would

have been preferable, the available data are adequate for the

methodology used in this study.

2.2 Climate models and future scenarios

The climate model data used in the study were obtained

from the Coupled Model Intercomparison Project – Phase

5 (CMIP5) multi-model ensemble (Taylor et al., 2012). A

large number of model runs, emission scenarios, time peri-

ods, etc. are available. For the purpose of this study, 16 cli-

mate models were selected. Additional information about the

runs used in this study includes:

– Control climate: Based on the 30-year period from 1971

to 2000.

– Future periods: two periods were considered, the first

from 2031 to 2060, the second from 2071 to 2100.

– Emission scenarios: Two Representative Concentration

Pathways, RCP4.5 and RCP8.5, were considered.

The numbering of the RCPs points to the radioactive forc-

ing in year 2100 relative to pre-industrial levels. For in-

stance, RCP4.5 represents an increase of radioactive forcing
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of+4.5 W m−2 in year 2010 while RCP8.5 represents the ra-

dioactive forcing of +8.5 W m−2. RCP8.5 is the most severe

of the four scenarios considered in the CMIP5 experiment.

The data grids of the different models have resolutions in

the order of 1 to 2◦. For each model, the grid point closest

to the centroid of the Red River basin south of the Canada-

US border was identified. Monthly precipitation, tempera-

ture, and evaporation time series for the control and future

periods were extracted for each model and each RCP.

2.3 Regression analysis and flood frequency distribution

A regression model can be used to predict spring peak flow

from the five predictor variables described in Sect. 2.1. A

logarithmic transformation should be used for both spring

peak flow and the predictors, in order to better satisfy the

requirement of linear regression that the error variance be in-

dependent of the predictand and predictors. The model used

here is similar to the one employed by Warkentin (1999), ex-

cept that he used the discharge at the James Avenue station

in Winnipeg rather than at Emerson, and employed nonlin-

ear regression to determine the parameters. The regression

equation has the following form:

ln(Q)= b0+ b1 ln(API)+ b2 ln(WP+SP)+ b3 ln(MI)

+ b4 ln(TF)+ ε (1)

where, in this study, Q refers to the spring peak discharge

at Emerson and the other variables are defined in Sect. 2.1.

Although not shown here, the annual spring peak discharge

is very well fitted by a 2-parameter lognormal distribution.

2.4 Methodology for assessing changes in the

distribution of floods

The proposed methodology for assessing change in the dis-

tribution of floods is based on the key assumption that the

regression model given in Eq. (1) is equally valid in the fu-

ture, i.e. that the parameters stay unchanged and that the error

variance also does not change. What may change is the distri-

bution of predictor variables and the dependent variable. The

basic idea is to use climate model data to estimate changes

in the distribution of predictor variables and then apply this

information to determine changes in the statistics of the de-

pendent variable, i.e. the logarithm of spring peak discharge.

If a regression model is fitted to a data set (yi , x1i ,

x2i, . . .,xmi), i = 1, . . .,n, by the method of least squares,

then it is well known that the following identities apply:

y = ŷ (2)

and

S2
y = S2

ŷ
+ S2

ε (3)

where the hat refers to predicted values and the predictions

in this particular case is for the observed predictors, (x1i ,

x2i, . . .,xmi), i = 1, . . .,n. As usual, an overbar indicates a

sample average and S2 indicates a sample variance. The first

equation states that the average of predicted values equals

the average of observed y-values. The second equation is the

well-known analysis-of-variance decomposition, used rou-

tinely in tests of regression models. It states that the vari-

ance of the y variable is equal to the variance of predicted

values plus the variance of the error. If a hypothetical future

data set of flood peaks and predictor variables were available,

one could repeat the regression estimation and would find the

same parameters and error variance, apart from the sampling

variability always involved in statistical analyses. Therefore,

if a future set of predictor variables can be obtained using in-

formation from climate models, we can get the mean value

and the variance of the dependent variable, in this case the

mean value and variance of ln(Q), using Eqs. (2) and (3).

The mean value and the variance of ln(Q) are the parameters

of the 2-parameter log-normal distribution which is known to

fit the historical data well.

The critical step in the procedure is the estimation of time

series of predictor variables for the future. For this purpose,

we make use of the delta-method. Climate model data for

current and future climates are used to determine factors of

change in the predictor variables. We focus specifically on

the three predictor variables API, WP, and SP. The melt-

index MI and time index TI are assumed to not change in the

future (as discussed in the next section, MI is not even sta-

tistically significant in the regression model). The observed

time series of predictor variables are scaled using the delta

factors to obtain future time series of predictors.

The delta values used as adjustment factors for the three

predictor variables are obtained as described below:

– API: The antecedent precipitation index is based on a

weighted average of basin precipitation from May to

October (Warkentin, 1999). To calculate the delta value

for the API, the following formula is used:

1API=

10∑
i=5

P
fut

i −

(
E

fut

i −E
con

i

)
P

con

i

ωi (4)

where index i refers to calendar month, overbar indicates

mean values, P and E are monthly precipitation and evapo-

ration accumulations from climate models, respectively, and

superscripts “fut” and “con” refer to future values and control

period values. The overbars on P and E refer to averaging

over the respective control and future periods. The quantity

ωi is the weight associated with month i which we define as

ωi = k 0.5(10−i) (5)

where k is a constant chosen so that the sum of weights over

the five months equals 1. In this way, most weight is given to

the month of October and increasingly smaller weights are

given to the preceding months.
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– WP: WP is by definition the total average precipitation

from 1 November to the start of the active melt period.

The duration thus varies from year to year, but for the

purpose of determining delta factors we ignore year-to-

year variations. The following formula is used to calcu-

late the delta factors for WP:

1WP=
P

fut

win−

(
E

fut

win−E
con

win

)
P

con

win

D
fut

D
con (6)

where the overbars refer to averages over the winter months

(November to March, averaged over all years), and D refers

to the average duration of the below-zero period. Information

about the below-zero period was derived from the monthly

temperature times series from the climate models.

– SP: Delta values for spring precipitation is calculated as

1SP=
P

fut

spring

P
con

spring

(7)

where the averages are calculated over the months of April

and May.

The delta values can be used to construct time series of

predictor variables for future climates. This is done by multi-

plying the historically observed time series of predictor vari-

ables by the corresponding delta values:

APIfut
= APIhis

×1API (8)

WPfut
=WPhis

×1WP (9)

SPfut
= SPhis

×1SP (10)

In summary, the following steps are involved in generating

flood distributions for future climates:

1. Determine delta values for the predictor variables API,

WP, and SP as described above.

2. Modify the observed time series of API, WP, and SP

using the delta values to obtain future time series.

3. Use the future time series of API, WP, and SP along

with the remaining predictors as input to the regression

model in Eq. (1) with ε set to zero to generate a time

series of ln(Q).

4. Use Eqs. (2) and (3) to determine the mean value and

variance of ln(Q).

5. Since from the regression assumptions, ln(Q) has a

normal distribution, the mean value and variance from

the previous point represent the parameters of a 2-

parameter lognormal distribution of floods in the future

climate.

Figure 2. Regression model result.

3 Results

Stepwise regression showed that the variable MI is not sig-

nificant in the model and it was therefore not included in the

further analysis. The regression model was revised as fol-

lows:

ln(Q)= 1.925+ 0.863ln(API)+ 1.813ln(WP+SP)

+ 0.363ln(TF)+ ε (11)

where ε is assumed to have a zero-mean normal distribution

with constant variance. Figure 2 shows that this assumption

is reasonably satisfied. The adjusted R-square value for the

above model is 0.83.

The 16 climate models used in the study are listed in Ta-

ble 2. For each of these models, monthly precipitation, evap-

oration, and temperature series were extracted for the con-

trol period and the two future periods, 2031–2060 and 2071–

2100, corresponding to the RCP4.5 and RCP8.5 scenarios,

for the grid point closest to the centroid of the Red River

basin. Figure 3 provides a summary of projected changes in

annual precipitation and mean annual temperature from the

16 climate models. As expected, all models project increased

temperatures, with the later period significantly warmer than

the earlier period, and the RCP8.5 scenario generally warmer

than the RCP4.5 scenario. By 2100, temperatures could in-

crease by as much as 7–9 ◦C relative to the control period

according to some of the models. There is also solid model

evidence for an increase in annual precipitation. While a few

models/scenarios suggest decreased precipitation, most mod-

els project increases which could be as much as 20 % by the

end of the century according to some models. Figure 3 il-

lustrates the large differences in model predictions and em-

Proc. IAHS, 371, 83–88, 2015 proc-iahs.net/371/83/2015/
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Table 2. Global climate models from the CMIP5 ensemble used in the study.

Modeling Center (or Group) Model Name

Beijing Climate Center BCC-CSM1.1

Canadian Centre for Climate Modelling and Analysis CanESM2

National Center for Atmospheric Research CCSM4

Community Earth System Model Contributors CESM1(BGC)

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CM

Centre National de Recherches Météorologiques CNRM-CM5

Institute of Atmospheric Physics, China, and Tsinghua University FGOALS-g2

Meteorological Office Hadley Centre HadGEM2-CC, HadGEM2-ES

Institute for Numerical Mathematics INM-CM4

Japan Agency for Marine-Earth Science and Technology MIROC-ESM, MIROC-ESM-CHEM, MIROC5

Max Planck Institute for Meteorology MPI-ESM-MR, MPI-ESM-LR

Meteorological Research Institute MRI-CGCM3

Figure 3. Changes in mean annual precipitation and mean annual

temperature for the Red River basin as projected by the 16 climate

models used in the study. 1P is the ratio between the future and the

control climate. 1T is the difference between future and control

mean temperature in degree Celsius.

phasizes the need to consider many models to adequately ac-

count for uncertainties in predictions.

It is worthwhile mentioning that we investigated seasonal

changes as well and that most of the increase in annual pre-

cipitation appears to be the result of increased winter and

spring precipitation while summer and fall precipitation is

projected to remain relatively constant, based on the ensem-

ble mean. This has important implications for this study.

The methodology outlined in the previous section was

used to generate future flood frequency distributions. Rather

than presenting the results for each model, each emission sce-

nario, and each time period, we have summarized the results

in Fig. 4. To create this figure, the assumption was made that

for a given emission scenario and a given time period, the

16 model ensemble members are equally likely to represent

the future truth. Therefore, each ensemble member is given

a probability of 1/16 to be representative of the future. The

average of the 16 cumulative distribution functions (CDFs)

Figure 4. Current return periods plotted versus future return periods

of spring peak runoff, as determined by the distributions for control

and future climates. See main text for details.

represents the “unconditional” future CDF (for a given RCP

and a given time period):

F (x)=
1

16

16∑
i=1

Fi(x) (12)

where F (x) is the unconditional CDF and Fi(x) is the CDF

obtained with model i. For various discharge levels, the cor-

responding return periods according to the control and the

future distributions were computed and plotted against each

other in Fig. 4. As shown in the figure, the RCP4.5-curves lie

below the 45-degree line. This means that if historical flood

values are used to obtain a design value for, say, a 100-year

return period, then one would be on the safe side in the sense

that the actual flood risk is expected to be lower. In contrast,

the RCP8.5 shows the opposite. The implication of this is

that if we design for a 100-year flood using current data, we

should expect to see the level surpassed more often than 1-

in-100 years in the future. For example, Fig. 4 shows that if

a 100-year protection level is desired, then one should de-
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sign for a 110-year flood based on current data if the RCP8.5

scenario is realized.

Figure 4 provides a convenient summary of the results, but

hides the fact that there is considerable variation between dif-

ferent models. While ensemble averages are useful, it is cru-

cial to keep the spread of the ensembles in mind. The ensem-

ble spread is a measure of model uncertainty and, depending

on the stakes involved, it may be preferable to adopt a more

conservative approach when designing important flood pro-

tection infrastructure.

4 Conclusions

Estimating the impact of climate change on the distribution

of extreme events is difficult for several reasons. Extreme

events are by definition rare, so there is usually a limited

amount of information available in historical records. Ex-

treme events are highly variable in time, resulting in large

statistical uncertainties in estimated model parameters. In ad-

dition, climate models generally have limitations in simulat-

ing extreme weather events. This is particularly true for in-

tense, short-duration rainstorms which cannot be simulated

realistically in coarse-resolution global climate models.

The present study has focused on the distribution of spring

floods in the Red River basin. Spring flooding is a result of a

variety of factors, of which the most important is the accumu-

lation of snow during the winter season. It is not unreason-

able to expect that global climate models will do a reason-

able job in simulating basin-wide snow accumulation over

the winter season. The basin effectively acts as a spatial and

temporal integrator of model output – thereby avoiding some

of the issues that are involved in producing extreme events

from global climate models.

We have employed a simple regression model to predict

spring peak flow in the basin as a function of several pre-

dictor variables. The proposed method for assessing climate

change impacts uses the well-known delta method to produce

scenarios of future predictor variables and this information in

turn is used to produce future flood frequency distributions.

Results were obtained for several emission scenarios, several

future time periods, and for 16 global climate models from

the CMIP5 ensemble. The ensemble mean in most cases is

relatively close to the historical distribution. However, there

is considerable spread in the ensemble, suggesting significant

model uncertainty which should be taken into account when

designing flood protection work.
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