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Abstract. Recently, the evidences of climate change have been observed in hydrologic data such as rainfall and

flow data. The time-dependent characteristics of statistics in hydrologic data are widely defined as nonstation-

arity. Therefore, various nonstationary GEV and generalized Pareto models have been suggested for frequency

analysis of nonstationary annual maximum and POT (peak-over-threshold) data, respectively. However, the alter-

native models are required for nonstatinoary frequency analysis because of analyzing the complex characteristics

of nonstationary data based on climate change. This study proposed the nonstationary generalized logistic model

including time-dependent parameters. The parameters of proposed model are estimated using the method of

maximum likelihood based on the Newton-Raphson method. In addition, the proposed model is compared by

Monte Carlo simulation to investigate the characteristics of models and applicability.

1 Introduction

Recently, various evidences of climate change have been ob-

served in hydrologic data (Jain and Lall, 2000, 2001). The

effect of climate change on hydrologic data is appeared as

a long-term trend or variability in observed hydrologic data.

The time-dependent characteristics of statistics in hydrologic

data are widely defined as nonstationarity. For analyzing the

time-dependent characteristics of hydrologic data, various

approaches for the nonstationary frequency analysis have

been studied in the recent years. Among many nonstation-

ary frequency analyses, the nonstationary GEV and gener-

alized Pareto models have been mainly suggested for fre-

quency analysis of nonstationary annual maximum and POT

(peak-over-threshold) data, respectively. However, the alter-

native models are required for nonstatinoary frequency anal-

ysis because of analyzing the complex characteristics of non-

stationary data based on climate change. For this purpose,

this study proposed the nonstationary generalized logistic

model including time-dependent parameters. The parameters

of proposed model are estimated using the method of max-

imum likelihood based on the Newton-Raphson method. In

addition, the proposed model is evaluated by Monte Carlo

simulation to investigate the characteristics of models and

applicability compared to the stationary generalized logistic

model under various simulation conditions.

2 Development of nonstationary generalized

logistic model

2.1 Generalized logistic distribution

The generalized logistic distribution is recommended for the

flood frequency analysis in UK by Flood Estimation Hand-

book (Institute of Hydrology, 1999). The cumulative distri-

bution function (CDF) of the generalized logistic distribution

are defined as (Hosking and Wallis, 1997)

F (x)=

[
1+

{
1−

β

α
(x− ε)

} 1
β

]−1

(1)

where ε, α, and β are location, scale, and shape parameters,

respectively. The range of variable (x) for negative shape pa-

rameter (β < 0) is given by ε+ α
β
≤ x <∞, and the vari-

able for positive (β > 0) shape parameter takes values within

−∞< x ≤ ε+ α
β

.
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Table 1. Stationary and nonstationary generalized logistic models.

Model Location Scale Shape CDF

GLO(0,0,0) ε α β F (x)=

[
1+

{
1−

β
α (x− ε)

} 1
β

]−1

GLO(1,0,0) ε0+ ε1t α β F (x)=

[
1+

{
1−

β
α (x− ε0− ε1t)

} 1
β

]−1

2.2 Nonstationary generalized logistic model

In this study, the time-dependent location parameter is

adopted for developing the nonstationary generalized logis-

tic model. The nonstationary location parameter is linearly

corresponded to time variable (e.g., ε0+ ε1t) and denotes

GLO(1,0,0). In addition, the stationary generalized logistic

model denotes GLO(0,0,0). The stationary and nonstation-

ary generalized logistic model is summarized in Table 1.

The parameters of the GLO(0,0,0) and GLO(1,0,0) models

are estimated using the method of maximum likelihood. The

method of maximum likelihood developed by Fisher (1922)

has been one of the best parameter estimation methods.

In the method of maximum likelihood, the parameters are

determined by maximizing the likelihood function or the

log-likelihood function. The log-likelihood functions for the

GLO(0,0,0) and GLO(1,0,0) models are respectively defined

by

LL000 =−N ln(α)+

(
1

β
− 1

) N∑
i=1

ln

{
1−

β(xi − ε)

α

}

− 2

N∑
i=1

ln

[
1+

{
1−

β(xi − ε)

α

} 1
β

]
(2)

LL100 =−N ln(α)+

(
1

β
− 1

) N∑
t=1

ln

{
1−

β(xt − ε0− ε1t)

α

}

− 2

N∑
t=1

ln

[
1+

{
1−

β(xt − ε0− ε1t)

α

} 1
β

]
(3)

In this study, the Newton-Raphson method is employed for

estimating the parameters.

2.3 Simulation study

In this study, the simulation experiment is performed to in-

vestigate the characteristics of stationary and nonstationary

generalized logistic models. In the simulation, the perfor-

mance of each model is evaluated by the root mean square

error (RMSE) between the true and calculated quantiles for

the generated data by stationary and nonstationary general-

ized logistic models. The RMSE is defined by

RMSE=

√√√√1

n

n∑
i=1

(xc(i)− xT (i))
2 (4)

where n is the number of data sets generated by each

model, xc(i) and xT (i) are the calculated and true quan-

tiles for the ith generated data set, respectively. Simula-

tion study is performed under various conditions such as

six sample sizes (i.e., N = 30, 50, 70, 100, 120, and 150),

eight shape parameters (i.e., −0.20, −0.15, −0.10, −0.05,

+0.05, +0.10, +0.15, and +0.20), and a fixed return period

(T = 100 year) for each sample size. The simulation is re-

peated until 10 000 sets.

For the generated data by the GLO(0,0,0) model, the sim-

ulation results are shown in Fig. 1. Generally, the RMSEs of

the GLO(0,0,0) and GLO(1,0,0) models decrease as the sam-

ple sizes increase as shown in Fig. 1. In addition, the RMSEs

of the GLO(0,0,0) model are generally smaller than those of

the GLO(1,0,0) model for various conditions.

For the generated data by the GLO(1,0,0) model, the sim-

ulation results are also shown in Fig. 2.

Generally, all RMSEs of the GLO(1,0,0) model and those

of the GLO(0,0,0) model except a case of ε1 =−0.01 and

β =+0.20 decrease as the sample sizes increase. However,

the RMSEs of the GLO(0,0,0) model increase as the sam-

ple sizes increase for a case of ε =−0.01 and β =+0.20 as

shown in Fig. 2b.

For negative shape parameters, the RMSEs of the

GLO(0,0,0) model are smaller than those of the GLO(1,0,0)

model until the sample size is 70. Over the sample size

of 70, the RMSEs of the GLO(1,0,0) model are smaller

than stationary ones. For positive shape parameters, the RM-

SEs of the GLO(0,0,0) model are smaller than those of the

GLO(1,0,0) model until the sample size is 50. Over the sam-

ple size of 70, the RMSEs of the GLO(1,0,0) model are

smaller than those of the GLO(0,0,0) model. Therefore, the

nonstationary generalized logistic model may be applied to

relatively long-term data over 70∼100.

3 Conclusions

For the alternatives of nonstationary frequency analysis, this

study proposed a nonstationary generalized logistic model

with time-dependent location parameter. The nonstationary

parameters are estimated using the method of maximum like-

lihood. In addition, Monte Carlo simulation is performed

to investigate the characteristics of a proposed models and

applicability compared to the stationary generalized logistic
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Figure 1. Simulation results for the generated data by GLO(0,0,0) model.
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(a) 1 =-0.01 and   = -0.20 
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(b) 1 =-0.01 and   = +0.20 
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(d) 1 =+0.01 and   = +0.20 

Figure 2. Simulation results for the generated data by GLO(1,0,0) model.

model. For the generated data by a stationary model, as the

results, the errors of stationary models were generally small-

est compared to nonstatnioary model. For the generated data

by a nonstationary model, oppositely, the errors of a nonsta-

tionary model were smaller than those of a stationary model

over 70 or 100 of sample size.
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