
Proc. IAHS, 371, 49–57, 2015

proc-iahs.net/371/49/2015/

doi:10.5194/piahs-371-49-2015

© Author(s) 2015. CC Attribution 3.0 License.

Open Access

H
y
d

ro
lo

g
ic

N
o

n
-S

ta
tio

n
a

rity
a

n
d

E
x
tra

p
o

la
tin

g
M

o
d

e
ls

to
P

re
d

ic
t

th
e

F
u

tu
re

(H
S

0
2

–
IU

G
G

2
0

1
5

)

Quantifying the uncertainties of climate change effects

on the storage-yield and performance characteristics of

the Pong multi-purpose reservoir, India

B. Soundharajan1, A. J. Adeloye1, and R. Remesan2

1Institute of Infrastructure and Environment, Heriot-Watt University, Edinburgh, UK
2Cranfield Water Science Institute, Cranfield University, Bedford, UK

Correspondence to: A. J. Adeloye (a.j.adeloye@hw.ac.uk)

Received: 11 March 2015 – Accepted: 11 March 2015 – Published: 12 June 2015

Abstract. Climate change is predicted to affect water resources infrastructure due to its effect on rainfall, tem-

perature and evapotranspiration. However, there are huge uncertainties on both the magnitude and direction of

these effects. The Pong reservoir on the Beas River in northern India serves irrigation and hydropower needs.

The hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon

rainfall; the changing pattern of the latter and the predicted disappearance of the former will have profound

effects on the performance of the reservoir. This study employed a Monte-Carlo simulation approach to charac-

terise the uncertainties in the future storage requirements and performance of the reservoir. Using a calibrated

rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temper-

ature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios.

Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-

change perturbed future scenarios. The resulting runoff ensembles were used to simulate the behaviour of the

reservoir and determine “populations” of reservoir storage capacity and performance characteristics. Comparing

these parameters between the current and the perturbed provided the population of climate change effects which

was then analysed to determine the uncertainties. The results show that contrary to the usual practice of using

single records, there is wide variability in the assessed impacts. This variability or uncertainty will, no doubt,

complicate the development of climate change adaptation measures; however, knowledge of its sheer magnitude

as demonstrated in this study will help in the formulation of appropriate policy and technical interventions for

sustaining and possibly enhancing water security for irrigation and other uses served by Pong reservoir.

1 Introduction

Climate change is predicted to affect the hydrology of most

regions through its influence on temperature, rainfall, evap-

otranspiration (IPCC, 2007) and ultimately the runoff and

performance of water resources infrastructures such as reser-

voirs. These impacts must be quantified for better plan-

ning and operation of water resource systems. This has

been attempted using outputs from general circulation mod-

els (GCMs) to force catchment hydrological models for the

assessment of runoff impacts. The outputs of these hydro-

logical models then form input to water resources simula-

tion models for the purpose of characterising systems per-

formance (see e.g. Fowler et al., 2003; Nawaz and Adeloye,

2006). However, as widely recognised (see Raje and Mujum-

dar, 2010), there are uncertainties in GCMs climate change

predictions not only between GCMs but also within GCMs

(Peel et al., 2014). The latter relates to the inability of a GCM

to produce the same output over different runs, while the for-

mer concerns variability in outputs of different GCM exper-

iments caused largely by structural, parametrisation and ini-

tialisation differences. To avoid the complications and uncer-

tainties in downscaled GCM climate predictions, change fac-

tor (delta perturbation) method is suggested, in which plau-

sible changes in the runoff impacting weather variables such

as precipitation and temperature are assumed and the effect
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of this on runoff is simulated using a suitable hydrological

model (Anandhi et al., 2011).

However, whether based on downscaled GCMs or delta

perturbations, the traditional approach using single traces of

both the current and future hydrology fails to recognise that

these single traces represent one realisation of the popula-

tion of possible traces. Thus, any impact estimated using the

single traces can only relate to the average impact; no infor-

mation is available on either the possible range of impacts

or the variability (or uncertainties) of the assessed impacts.

To be able to provide these answers, the population (or en-

semble) of the current and future climate is required. Peel

et al. (2014) did this to characterise within-GCM variability

by replicating (100 times) GCM-based single runs of current

and future climate, using a Monte Carlo simulation approach.

These then produced replicates of runoff (current and future),

which were then used to force a hydrological model, leading

ultimately to the evaluation of uncertainties and variability in

runoff and reservoir yields.

This work has characterised the uncertainties in climate

change impacts for the Pong reservoir using an approach

similar to that described by Peel et al. (2014). However,

major differences between the current study and Peel et

al. (2014) include that: delta perturbations instead of down-

scaled GCM climate change scenarios were used; stochas-

tic modelling to derive replicates of runoff used the runoff

series directly, rather than the indirect approach by Peel et

al. (2014) in which the rainfall and temperature were mod-

elled stochastically; and reservoir impacts analysis is not lim-

ited to the yield/storage alone but includes consideration of

performance indices.

In the following sections, more details about the adopted

methodology are given. These are then followed by the case

study after which the results are presented and discussed. The

final section contains the conclusions.

2 Methodology

The flowchart of the methodology is shown in Fig. 1.

2.1 HYSIM hydrological model

HYSIM was used to simulate catchment runoff in the study.

HYSIM is a conceptual rainfall-runoff model that has the ca-

pability to simulate river basin scale hydrology as described

in detail by Manley and WRA (2006). The mandatory mini-

mum input data requirements to run the model are the precip-

itation, temperature and potential evapotranspiration. Apart

from its possible use in modelling the evapotranspiration,

the temperature is also required for the modelling of snow-

melt and accumulation based on the empirical degree-day ap-

proach. HYSIM has been extensively used in several research

studies including snowy catchments of the United Kingdom

to address climate change impacts issues (Murphy et al.,

2006).
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Figure 1. Methodology flow chart 3 
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Figure 1. Methodology flow chart.

2.2 Stochastic data generation

Replicates of monthly runoff were simulated using the

Thomas-Fiering monthly model (McMahon and Mein,

1986):

Q2 = µFeb+ bFeb/Jan(Q1−µFeb)+ tnσFeb

√
(1− ρ2

Feb/Jan)

.

.

Q13 = µJan+ bJan/Dec(Q12−µJan)+ tnσJan

√
(1− ρ2

Jan/Dec)

 (1)

bFeb/Jan = ρFeb/Jan

σFeb

σJan

(2)

where, Q1,Q2 are generated flows for month January and

February respectively; µ is mean flow for the month indi-

cated; b is least square regression coefficient (Eq. 2); tn is

normal random variate with zero mean and unit variance;

σ is standard deviation of flow for the month indicated; ρ

is correlation coefficient between adjacent months as indi-

cated. Equation (1) assumes that monthly runoff is normally

distributed, which as will be seen later is not true for the

Beas River. Thus, the Box-Cox transformation (see Eq. 3)

was used to normalise the data:

Q′ =

 Qλ
− 1

λ
,λ 6= 0

lnQλ= 0

(3)

where, Q and Q′ are untransformed (UT) and transformed

(Tr) flows respectively, and λ is a parameter estimated such

that the skewness of Q′ becomes zero (McMahon and Ade-

loye, 2005).

After transformation using Eq. (3), the parameters in the

Eqs. (1) and (2) are estimated and used for data generation.
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The final step in the data generation is to bring back the gen-

erated values to the original values by applying inverse of the

Box-Cox transformation:

Q=
(
Q′λ+ 1

)1/λ
(4)

2.3 Sequent Peak Algorithm (SPA) for capacity

estimation

For reservoir capacity estimation, the sequent peak algorithm

(SPA) was used (McMahon and Adeloye, 2005):

Kt+1 =max(0,Kt+Dt−Qt); t ∈N (5)

Ka =max(Kt+1) (6)

where,Ka is reservoir capacity,Kt+1 andKt are respectively

the sequential deficits at the end and start of time period t ,

Dt is the demand during t , Qt is the inflow during t and N

is the number of months in the data record. The analysis as-

sumes that the reservoir is full at start and end of the cycle,

i.e. Ko =KN = 0. If KN 6= 0, the SPA cycle is repeated by

setting K0 =KN .

2.4 Reservoir behaviour simulation and performance

indices

To assess reservoir performance, behaviour simulation was

carried out using (McMahon and Adeloye, 2005):

St+1 = St+Qt−D
′
t;LRC≤ St+1 ≤ URC (7)

where, St+1,St are respectively, reservoir storage at the end

and beginning of time period t ; D′t is the actual water re-

leased during t (which may be different from the demandDt,

depending on the operating rule curves); LRC is the lower

rule curve ordinate for the month corresponding to t ; and

URC is the upper rule curve ordinate. Genetic algorithms

(GA) optimised rule curves derived for the Pong reservoir

by Adeloye et al. (2015) were used.

Following simulation, the performance was summarised

using (McMahon and Adeloye, 2005):

Reliability (time-based (Rt) and volume-based (Rv)):

Rt =Ns/N (8)

Rv =

N∑
t=1

D′t/

N∑
t=1

Dt (9)

Resilience (ϕ):

φ = 1/ (fd/fs)= fs/fd;0< φ ≤ 1 (10)

Vulnerability (η):

η =

fd∑
t=1

[(Dt−D
′
t)/Dt]/fd; t ∈ fd (11)

where, Ns is the total number of intervals (months) out of N

(months) that the demand was met; fs is number of contin-

uous sequences of failure periods; fd is the total duration of

the failures; and all other symbols are as defined previously.

2.5 Pairing of runoff replicates for impact assessment

To obtain the population of climate change impacts on the

various reservoir characteristics, estimates of these charac-

teristics for the current and corresponding future runoff are

required. The best way to achieve this is to use a “two-site”

stochastic generation approach (see McMahon and Adeloye,

2005), in which the current runoff is a “site” and the future

runoff is another “site”. This approach was used by Peel et

al. (2014) for quantifying the effect on runoff, etc. of cli-

mate change perturbations in the precipitation and temper-

ature pair, considering each of these processes as a “site”.

However, multi-site data generation requires too much ef-

fort and can be problematic if the data are non-normally dis-

tributed. Consequently, a different approach which is much

simpler to use was adopted in this study as follows. After the

stochastic generation of 1000 replicates for the current and

future runoff, a pair of integer numbers was randomly gen-

erated, with the 1st of these representing the current and the

2nd representing the future. This process is repeated until all

the 1000 current and future runoff series have been paired

up. If during the generation, a number is repeated (i.e. has

been generated before), that pair is discarded and a new pair

is generated. In this way the current and future hydrology

scenarios (or runoff series) are paired up for the purpose of

climate change impacts assessment.

3 Case study river basin and data

The Beas River, on which the Pong dam and its reservoir

are located, is one of the five major rivers of the Indus basin

in India (see Fig. 2). The reservoir drains a catchment area

of 12 561 km2, out of which the permanent snow catchment

is 780 km2 (Jain et al., 2007). Active storage capacity of

the reservoir is 7290 Mm3. Monsoon rainfall between July

and September is a major source of water inflow into the

reservoir, apart from snow and glacier melt. The reservoir

meets irrigation water demands of 7913 Mm3 year−1 to ir-

rigate 1.6 Mha of command area. The mean monthly distri-

bution of the irrigation releases is shown in Fig. 3. These

releases pass through hydropower turbines to generate elec-

tricity prior to being diverted to the irrigation fields.

Monthly reservoir inflow and release data from January

2000 to December 2008 (9 years) were available for the

study. The historic mean annual runoff (MAR) at the dam site

is 8485 Mm3 (annual coefficient of variation is 0.225). The

mean monthly flows are also shown in Fig. 3, which reveals

the significantly higher inflows during the Monsoon season.

In general, the irrigation demands are larger than the natural

river flows except during the Monsoon, implying that such

proc-iahs.net/371/49/2015/ Proc. IAHS, 371, 49–57, 2015
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Figure 2. Beas river basin.
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Figure 3. Average monthly inflows and releases from Pong reservoir (2000-2008) 3 
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Figure 3. Average monthly inflows and releases from Pong reser-

voir (2000–2008).

demands cannot be met without the Pong reservoir. Grid-

ded Tropical Rainfall Measuring Mission (TRRM 3B42 V7)

daily rainfall data with the spatial resolution of 0.25◦× 0.25◦

that span the runoff period were used. Since potential evap-

Table 1. Climate change effects on mean annual runoff (Mm3).

(Values in parenthesis are % change relative to current conditions.)

1 T , ◦C Annual precipitation change (%)

−5 % 0 % +5 %

0 5829.16 6217.92 6634.23

(−6.25) (0) (6.70)

+1 6116.36 6476.91 6853.01

(−1.63) (4.17) (10.21)

+2 6989.75 7349.26 7726.83

(12.41) (18.19) (24.27)

otranspiration (ETo) measurements were unavailable, es-

timates were obtained using the Penman-Monteith (P-M)

formulation forced with meteorological variables from the

NCEP Climate Forecast System Reanalysis (CFSR) data

from January 1999–December 2008.

Proc. IAHS, 371, 49–57, 2015 proc-iahs.net/371/49/2015/
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Figure 4. Comparison of statistics of ‘observed’ (HYSIM) and stochastically generated 5 

(GEN) runoff: (a) mean; (b) standard deviation; (c) correlation coefficient; and (d) skewness 6 
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Figure 4. Comparison of statistics of “observed” (HYSIM) and stochastically generated (GEN) runoff: (a) mean; (b) standard deviation;

(c) correlation coefficient; and (d) skewness.

Table 2. Climate change effects on mean seasonal runoff (Mm3). (Values in parenthesis are % change relative to current conditions.)

1T , ◦C Annual precipitation change (%)

Winter Pre-Monsoon Monsoon Post-Monsoon

−5 % 0 % +5% −5 % 0 % +5% −5 % 0 % +5% −5 % 0 % +5 %

0 382 410 442 301 327 356 3594 3838 4098 1550 1641 1737

(−6.8) (0.0) (7.8) (−7.9) (0.0) (8.9) (−6.3) (0.0) (6.8) (−5.5) (0.0) (5.83)

+1 354 376 400 288 308 331 3877 4111 4355 1595 1679 1765

(−13.5) (−8.2) (−2.4) (−12) (−5.7) (1.1) (1.0) (7.1) (13.5) (−2.8) (2.3) (7.5)

+2 405 426 450 337 359 383 4414 4647 4890 1832 1915 2002

(−5.9) (−1.2) (4.0) (3) (9.7) (16.9) (15) (21) (27.4) (11.6) (16.7) (22.0)

4 Results and discussion

4.1 HYSIM rainfall-runoff model

The model was calibrated with daily data from January 2000

to December 2004 and validated using the data from Jan-

uary 2005 to December 2008. In general, the model per-

formed reasonably well with Nash-Sutcliffe efficiency in-

dices during the calibration and validation were respectively

0.88 and 0.78. The complete details about the performance

of the model during calibration and validation are presented

by Adeloye et al. (2015).

The calibrated HYSIM model was used to assess impacts

of delta changes in the precipitation and temperature on the

runoff. Changes in the annual precipitation considered were

±5 % and for temperature, increases of 1 and 2 ◦C were

considered. The mean values of the simulated annual and

seasonal runoff are given in Tables 1 and 2 respectively.

In general, reduction in precipitation causes reduced runoff

irrespective of temperature situation. However, the simula-

tion has also revealed the influence of the melting seasonal

snow/glacier on the runoff. For example, on an annual scale,

increasing the temperature by 2 ◦C is causing the runoff to in-

crease by 18 %. The effect of decreasing rainfall on the runoff

appears moderated by rising temperature due to the resulting

runoff from melting snow and glacier. Thus, the 6.3 % reduc-

tion in annual runoff arising from a 5 % decrease in rainfall

has turned to a 12 % rise in runoff when the temperature rose

by 2 ◦C.

4.2 Data generation

The high skew of the untransformed (UT) monthly runoff

shown in Table 3 suggests that the monthly runoff cannot

justifiably be modelled using the normal distribution. The

skew of the Box-Cox transformed data (Tr) are also shown in

proc-iahs.net/371/49/2015/ Proc. IAHS, 371, 49–57, 2015
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Table 3. Box-Cox transformation parameter (λ) and the skew coefficient for untransformed (UT) and transformed (Tr) monthly flow values

for current runoff scenario.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

UT −0.35 1.15 1.97 −0.89 0.80 0.99 0.05 0.49 −0.38 0.38 1.03 0.87

Tr −0.22 0.12 0.33 −0.33 0.01 0.0 −0.07 0.0 −0.22 0.0 0.01 0.0

λ 2.16 −1.05 −1.93 0.90 −0.16 −0.02 0.75 0.06 1.44 −0.03 −2.21 −1.40
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Figure 5. Box plot of reservoir capacity estimates 2 
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Figure 5. Box plot of reservoir capacity estimates.
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Figure 6. Predicted changes in reservoir capacity (%)between the current and pertubed (future) 2 

scenarios. 3 

  4 

-200

-150

-100

-50

0

50

100

T0
_P
-5
%

T0
_P
+5
%

T1
_P
-5
%

T1
_P
0
%

T1
_P
+5
%

T2
_P
-5
%

T2
_P
0
%

T2
_P
+5
%

P
re

d
ic

te
d

 c
h

an
ge

s 
in

 c
ap

ac
it

y 
(%

) 

Scenarios  

Figure 6. Predicted changes in reservoir capacity (%)between the

current and pertubed (future) scenarios.

Table 3, together with the estimated transformation parame-

ter (λ). The transformed data exhibit the required near zero

skew.

The characteristics of the generated and historic runoff

(current) data are compared in Fig. 4. Similar results are

available for the future runoff scenarios but these have been

omitted here for lack of space. The generated statistics are the

mean over the 1000 replicates. Figure 4 shows the stochas-

tic model has reasonably reproduced the mean, standard de-

viation and correlation of the historic. The skewness is less

well simulated, which is not surprising given that the skew

was removed prior to the stochastic modelling. However, this

should not be a major concern since reservoir capacity esti-

mate is mostly influenced by the coefficient of variation, CV

(i.e. standard deviation divided by the mean) and less by the

skew (Burges and Linsley, 1971).
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Figure 7. Cumulative distribution function (CDF) of required storage capacity 2 
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Figure 7. Cumulative distribution function (CDF) of required stor-

age capacity.

4.3 Uncertainty in capacity estimates

Population of reservoir capacity based on existing monthly

irrigation releases at the Pong (see Fig. 3) are summarised in

the box plots in Fig. 5. The horizontal dashed line represents

the existing capacity of 7290 Mm3. As Fig. 5 clearly shows,

there is wide variability in the required reservoir capacity for

each runoff scenario. Although the existing capacity of the

Pong is 7290 Mm3, the required capacity estimates based on

the current runoff series could be as low as 3854 Mm3 or

as high as 10 289 Mm3. These, respectively, represent over-

design and under-design situations relative to the existing ca-

pacity at the Pong reservoir. The implication of under design

is that the reservoir will fail frequently to meet the demand,
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Figure 8. Box plot of reservoir performance indices: (a) time reliability; (b) volumetric reliability;  (c) 5 

resilience; and (d) vulnerability 6 
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Figure 8. Box plot of reservoir performance indices: (a) time reliability; (b) volumetric reliability; (c) resilience; and (d) vulnerability.

as recently found by Adeloye et al. (2015), where the simu-

lated vulnerability of the Pong reservoir was shown to be as

high as 66 %.

The effect of climate change on the capacity estimates

broadly follows the effect on runoff. Thus, as the precipi-

tation and hence runoff decreases, the capacity required for

meeting the demand increases. Consequently, a 5 % decrease

in the rainfall without a change in temperature (T0_P-5 %)

would require a capacity as high as 11 902 Mm3 to meet ex-

isting demands. However, when the precipitation increased

by the same amount, (T0_P+5 %), the maximum capacity

was 10 029 Mm3. This is only marginally less than the max-

imum capacity for the T0_P0 % scenario and may be caused

by the fact that the additional rainfall especially in the already

wet Monsoon season does not influence reservoir capacity

estimate. When the precipitation changes are accompanied

by increase in temperature, the resulting additional runoff has

caused a reduction in the capacity requirement when com-

pared to their corresponding no-temperature change situa-

tions.

Figure 6 summarises the population of changes in required

reservoir capacity based on the paired experiments discussed

earlier. Again, there are huge uncertainties in the predicted

changes, which call into question the use of single runs of im-

pact models in water resources climate change impact stud-

ies. Figure 6 shows the uncertainties are more pronounced

for drier conditions than for wetter conditions. Thus, a 5 %

decrease in the rainfall can mean that the current capacity is

either too little by as much as 134 % or is too much by 55 %.

For the most wet future scenario investigated (T2_P+5 %),

the variability is much less, with either an under design of

68 % or over design of 62 %.

The above large arrays of possibilities in the impact of cli-

mate change are bound to complicate decision making re-

garding adaptation and mitigation. Because impacts are not

unique, it is obviously misleading to be talking of the impact

because such does not exist. However, what can be done is

to attach likelihood (or probability) of occurrence to the as-

sessed impacts. Figure 7 shows the empirical cumulative dis-

tribution function (CDF) of required capacity estimates for

all the investigated scenarios and reveals the rightward shift

in the CDF as the catchment becomes drier, implying higher

storage requirements at a given probability. Additionally, not

only are the drier conditions requiring more storage at a given

probability, their CDFs are also less steep resulting in signif-

icant differences between the lower and higher quantiles of

the capacity estimates.

4.4 Uncertainty in reservoir performance

The resulting performance of reservoir behaviour simulation

for the ensembles of stochastic replicates generated for vari-

ous scenarios are shown in Fig. 8a–d. As was the case with

the capacity estimates, all the assessed indices have uncer-

tainties. A quick comparison of time based reliability (Rt)

and volumetric reliability (Rv) shows that Rt <Rv. From

Fig. 8a, it is evident that, Rt is improving when the precip-

itation is increasing as expected; similarly temperature in-

creases also improved the Rt, due to additional runoff avail-
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Figure 9. Cumulative distribution function (CDF) of reservoir performance indices: (a) time 5 
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Figure 9. Cumulative distribution function (CDF) of reservoir performance indices: (a) time reliability; (b) volumetric reliability; (c) re-

silience; and (d) vulnerability.

ability from snow and glacier melt from the Himalayas. Con-

trary to Rt, the Rv shows less variability for all the scenarios.

Figure 8c shows the resilience (i.e. probability of recover-

ing from failure) and reveals that, increasing the precipitation

also improves the resilience. Figure 8d shows the variability

in the assessed vulnerability. In general, the vulnerability is

decreasing as expected when the precipitation and tempera-

ture are increasing. However, although the assessed vulner-

ability of the Pong reservoir is about 66 % based on single

run of the runoff record as alluded to earlier (see Adeloye et

al., 2015), the vulnerability could actually be either as low

as 33 % or as high as 94 % if the stochastic properties of

the runoff are taken into account. In general, vulnerability

(or single period deficits) above 25 % is not recommended

because of the distress it can cause to water users (Fiering,

1982). Thus, the fact that the least vulnerabilities obtained

for the Pong exceeds 25 % requires changes in operational

practices, e.g. by hedging, to tamper the large single period

shortage. The empirical CDFs of the performance indices are

shown in Fig. 9, from where values corresponding to given

probability of occurrence can be obtained.

5 Conclusions

The Monte Carlo experiments have revealed the limitation

of single runoff impact models for water resources impact

assessments. The results for the Pong reservoir using delta

perturbations in rainfall and temperature have shown that as-

sessed impacts can be highly variable. For example, in re-

lation to reservoir capacity needed to maintain existing lev-

els of irrigation water releases, it has been revealed that the

needed capacity for future conditions may either be 175 %

lower or 60 % higher. The associated reservoir performance

indices are similarly highly variable.

Acknowledgements. The work reported here was funded by the

UK-NERC (Project NE/1022337/1) – Mitigating Climate Change

impacts on India Agriculture through Improved Irrigation Water

Management (MICCI) – as part of the UK-India Changing Water

Cycle (CWC South Asia) thematic Programme.

References

Adeloye, A. J, Soundharajan, B., Ojha, C. S. P., and Remesan, R.:

Genetic Algorithms optimised hedging rules for improved per-

formance of the Pong Reservoir (India) during scenario-neutral

climate change perturbations, Water Resour. Manag., in review,

2015.

Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E.

M., Zion, M. S., Lounsbury, D., and Matonse, A. H.:

Examination of change factor methodologies for climate

change impact assessment, Water Resour. Res., 47, W03501,

doi:10.1029/2010WR009104, 2011.

Burges, S. J. and Linsley, R. K.: Some factors influencing required

reservoir storage, Journal Hydraul. Div. ASCE, 97, 977–991,

1971

Fiering, M. B.: Estimates of resilience indices by simulation, Water

Resour. Res., 18, 41–50, 1982.

Proc. IAHS, 371, 49–57, 2015 proc-iahs.net/371/49/2015/

http://dx.doi.org/10.1029/2010WR009104


B. Soundharajan et al.: Climate change effects on storage-yield and performance of Pong reservoir 57

Fowler, H. J., Kilsby, C. G., and O’Connell, P. E.: Modeling the

impacts of climatic change and variability on the reliability, re-

silience and vulnerability of a water resource system, Water Re-

sour. Res., 39, 1222, doi:10.1029/2002WR001778, 2003.

IPCC, Summary for policymakers, Climate Change 2007: The

physical science basis, Contribution of the Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change, Cambridge University Press, Cambridge,

18 pp., 2007.

Jain, S. K, Agarwal, P. K., and Singh, V. P.: Hydrology and water

resources of India, Springer, the Netherlands, 1258 pp. 2007.

Manley, R. E. and Water Resources Associates (WRA): A guide to

using HYSIM, R. E. Manley and water resources associates Ltd,

Wallingford, UK, 118 pp., 2006.

McMahon, T. A. and Adeloye, A. J.: Water Resources Yield, Water

Resources Publ., Littleton, CO, USA, 220 pp., 2005.

McMahon, T. A. and Mein, R. G.: River and reservoir yield, Water

Resources Publ., Col., USA, 368 pp., 1986.

Murphy, C., Fealy, R., Charlton, R., and Sweeney, J. S.: The reli-

ability of an “off the shelf” conceptual rainfall-runoff model for

use in climate impact assessment: uncertainty quantification us-

ing Latin Hypercube Sampling, Area, 38, 65–78, 2006.

Nawaz, N. R. and Adeloye, A. J.: Monte Carlo assessment of sam-

pling uncertainty of climate change impacts on water resources

yield in Yorkshire, England, Climatic Change, 78, 257–292,

2006.

Peel, M. C., Srikanthan, R., McMahon, T. A., and Karoly, D. J.: Un-

certainty in runoff based on Global Climate Model precipitation

and temperature data – Part 2: Estimation and uncertainty of an-

nual runoff and reservoir yield, Hydrol. Earth Syst. Sci. Discuss.,

11, 4579–4638, doi:10.5194/hessd-11-4579-2014, 2014.

Raje, D. and Mujumdar, P. P.: Reservoir performance under uncer-

tainty in hydrologic impacts of climate change, Adv. Water Re-

sour., 33, 312–326, 2010.

proc-iahs.net/371/49/2015/ Proc. IAHS, 371, 49–57, 2015

http://dx.doi.org/10.1029/2002WR001778
http://dx.doi.org/10.5194/hessd-11-4579-2014

	Abstract
	Introduction
	Methodology
	HYSIM hydrological model
	Stochastic data generation
	Sequent Peak Algorithm (SPA) for capacity estimation
	Reservoir behaviour simulation and performance indices
	Pairing of runoff replicates for impact assessment

	Case study river basin and data
	Results and discussion
	HYSIM rainfall-runoff model
	Data generation
	Uncertainty in capacity estimates
	Uncertainty in reservoir performance

	Conclusions
	Acknowledgements
	References

