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Abstract. Socio-hydrology describes the interaction between the socio-economy and water. Recent models an-

alyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre

et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic

development and natural disasters like floods. Contrary to these descriptive models, our approach develops an

optimization model, where the intertemporal decision of an economic agent interacts with the hydrological sys-

tem. In order to build this first economic growth model describing the interaction between the consumption

and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing

descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and sim-

ulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete

stochastic time series of rainfall events.

Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and

investment will be periodic.

1 Introduction

During the past decades more and more floods have occurred,

especially in central and eastern Europe. Still, people like to

settle close to rivers to reap economic advantages: rivers en-

able ways of transport, supply water for industry and agri-

culture and enhance the quality of living due to lively nature

and beautiful scenery. But the awareness of flooding has in-

creased, and therefore societies develop projects like building

levees to avoid or at least reduce flood damage. These invest-

ments are costly, but avoid damage in the future. Simulation

models can describe this interesting trade-off structure. But

analysing the investment strategies is even more meaningful

in an economic decision framework. Consequently, we de-

velop an optimization model based on existing descriptive

socio-hydrology models.

Viglione et al. (2014) and Di Baldassarre et al. (2013) de-

veloped such models to explain the feedbacks between set-

tlements close to rivers and flooding events. Protecting a set-

tlement can, however, increase the damage of the settlement

downwards the river. Furthermore, higher levees or any other

defence capital are lowering the risk of floods and therefore

may even further increase the willingness to settle close to

the river. But if water levels rise higher than the levees, the

physical capital next to the river is destroyed. Since there is

a higher physical capital stock next to the river, the flood hits

the economy even harder.

The model of Viglione describes the dynamics of four key

variables: the size of the human settlement G(t) (number of
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people, physical size of settlement, economic wealth), the

distance between the settlement and the riverD(t), the height

of the levees H (t) and the memory of flooding events M(t).

We present a short summary of the model in the following as

it will serve as the benchmark model for our alternative set

up of a deterministic model. Note, Greek letters are exoge-

nous parameters and capital letters are endogenous variables

described by the model.

The flood intensity

F (t)=

{
1− exp

(
−
W (t)+ξHH−
αHD(t)

)
if W (t)+ ξHH− >H−

0 else
(1)

is bounded by the interval [0, 1] and measures the relative

damage of the economic wealth in case of a flood. A flood

occurs if the effective water level W (t)+ ξHH− exceeds the

height of the levees H−. The higher the effective water level

and the closer to the river the settlement is located (i.e. the

higher the value of D), the higher is the flood intensity.

People raise the levees by the amount

R(t)= εT (W (t)+ ξHH−−H−), if a flood occurs

(F (t)> 0), the flood damage (F (t)G−) is higher

than the costs of raising the levees (γER(t)
√
G−)

and the economy can still effort to build them

(G−−F (t)G(t)>γER(t)
√
G−). Raising the levees

yields a lower shock magnitude (S=αSF (t)) than without

(S=F (t)). The dynamics are described by the four key

variables mentioned above:

dG

dt
= φE(1−D(t))G(t)−1(ϒ(t))

[
F (t)G(t)+ γER(t)

√
G(t)

]
(2)

dD

dt
=

(
M −

D

λP

)
ϕP
√
G(t)

(3)

dH

dt
=1(ϒ(t))R(t)− κTH (4)

dM

dt
=1(ϒ(t))S(t)−µSM(t). (5)

1(ϒ(t)) equals one if a flooding event occurs and zero the

rest of the time. The change in economic wealth G(t) is de-

creasing if the settlement lives further away from the river

(D(t)) and if a flood hits (see Eq. 2). In order to increase

the economic wealth, people tend to move closer to the river

unless the memory of the last flood is still high (Eq. 3).

Equation (4) assumes that levees depreciate over time ex-

cept in those periods where people are raising them due to the

occurrence of flooding events. Similar, the memory of peo-

ple about flooding events depreciates over time if no shock

appears due to a new flood (Eq. 5).

In the model (Viglione et al., 2014) described by Eqs. (1)

to (5) the timing and the height of the flooding events are

specified with a stochastic function. In a first step we ap-

proximate the stochastic water level by a deterministic pe-

riodic function. We next set up an optimal dynamic control

model that allows for the optimal decision of the amount to

be invested into defence capital that protects societies from

flooding. The objective to be maximized is a societal wel-

fare function that depends on consumption which in turn de-

pends on the investment into productive capital. Hence, we

are faced with an intertemporal optimal investment decision

between defence versus productive capital.

2 Introducing optimization into socio-hydrology

Dynamic optimization methods are rarely used in socio-

hydrology. In the nineties Sritharan (1992) used optimal con-

trol in hydrodynamics and flow analysis, but did not capture

the socio-economic perspective. Chahim et al. (2013) were

the first who used optimal control to derive the optimal tim-

ing of dike heightenings as well as the corresponding optimal

dike heightenings to protect against floods.

The aim of dynamic optimization is to control a dynamic

system such as mechanical motions, physical processes, and

economic systems in an optimal way. Optimization is not

only a goal, it could be a tool for understanding the mecha-

nisms of a system (Veliov, 2012). We can use both analytical

and numerical methods to solve optimization problems. In

this paper we focus on analytical solutions, but also consider

numerical methods once analytical solutions are no longer

feasible.

An optimization problem consists of an objective function

that is maximized or minimized with respect to control vari-

ables, and subject to the dynamics of the variables involved

(termed state equations) and possibly additional constraints

on control and state variables. The Lagrangian method is

used to derive optimal static solutions. In contrast dynamic

optimization problems are more complicated as they involve

intertemporal decisions (e.g. investing today or later) that in

turn determine the evolution of state variables (e.g. capital)

and hence the dynamic evolution of the objective function.

We can apply optimal control theory or dynamic program-

ming to solve dynamic optimization problems. For analytical

solutions it is more popular to use optimal control theory. The

main methods are the use of the Pontryagin’s maximum prin-

ciple (Pontryagin, 1962) and the Hamilton–Jacobi–Bellman

equation (Bellman, 1954). In the following we only refer to

deterministic optimal control theory.

2.1 Requirements for optimization

In order to set up a deterministic optimal control model we

first approximate the water level function by a deterministic

periodic function and secondly we transform all discontinu-

ous functions to continuously differentiable functions.

2.2 The continuous water function

Rainfall is part of the water cycle and appears in a more or

less regular way. We therefore apply a periodic function to

model the water level after such rainfall events (Yevjevich

and Harmaciocjlu, 1990; Zakaria, 2001). Moreover, we also
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Figure 1. (a) The periodic continuous water function. (b) The wa-

ter function Wa with a higher amplitude compared to the initial wa-

ter function W . (c) The water function Wf with a higher frequency

compared to the initial water function W .

have to represent extreme rain events. Obviously, such ex-

treme events do not occur as often as normal rainfall events.

Together with Langer (2014) we developed the following pe-

riodic function to approximate the periodic water level.

W (t)=
1

2

κs∑
κi=1

cos(κmκi t) (6)

Figure 1a shows two periods of this function using κs = 10

and κm= 1. Of course, we can change the amplitude of the

water level and the frequency of the extreme rainfall events

choosing the parameter κs and κm, respectively. Figure 1b

displays function (Eq. 6) for κs = 20 and κm= 1 and Fig. 1c

indicates a higher frequency using κs = 10 and κm= 3.

Since water levels can only be positive we transform the

water level in Eq. (6) to the positive water level function:

W (t)=max

[
0,

1

2

κs∑
κi=1

cos(κmκi t)

]
. (7)

Note, function (Eq. 7) is not continuous differentiable. In

case we do not set the basic water level zero but want

W (t)= 0 to represent dry times we can shift the function

(Eq. 6) and write

Figure 2. A simulation of the key dynamics of Viglione et al. (2014)

given the continuous water function. It shows economic wealth G,

distance D, height of levees H , memory M , basic water level W

and effective water level Weff.

W (t)=
1

2

κs∑
κi=1

cos(κmκi t)+ ζW (8)

with the positive constant

ζW =

∣∣∣∣∣ min
t∈[0,2π ]

[
1

2

κs∑
κi=1

cos(κmκi t)

]∣∣∣∣∣ .
This guarantees that the water levelW (t)is always larger than

or equal to zero.

For the following analysis we use function (Eq. 6) in order

to have a continuous and twice differentiable function.

3 Results

To demonstrate the effects and plausibility of the continu-

ous water function we simulated the model of Viglione et

al. (2014) using the continuous input function (Eq. 6) instead

of the random rainfall events. Figure 2 shows the dynamics

of the model based on the new water function. We also pro-

vided the simulation of the model in Fig. 3 using the stochas-

tic rainfall events from Viglione et al. (2014).

The economy is growing exponentially, even though it de-

cays during every flooding event. This is not only because of

the damage that occurs, but also because of the investments

in raising the levees. The levees can avoid small floods, but

the frequency of the large floods is too low to sustain depreci-

ation and protect the settlements with levees. However, in the

first decade of the simulation the settlement moves closer to

the river, but remains half way for the rest of the time. On the

one hand, the memory is not significantly high over a longer

period to make the settlement move further away. Every time

a huge flood occurs, the memories are present, but people

forget very fast and after around two years they do not care

about past floods any more. On the other hand, the size of the

settlement and the economy is already so extended that it is

hard to move.

To sum up, both simulations in Figs. 2 and 3 show quali-

tatively similar results. Even though the timing and the dura-

tion of the high water levels due to extreme rainfall events are
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Figure 3. A simulation of the key dynamics of Viglione et al. (2014)

using the original random rainfall events. It shows economic

wealth G, distance D, height of levees H and memory M .

slightly different, in the long term the consequences of floods

lead to the same qualitative behaviour of the variables.

Specifically, we can identify a periodic behaviour of the

system after some decades in Fig. 2, whereas the random

events obviously cause rather unpredictable behaviour.

4 Conclusion and outlook

Our aim is to demonstrate how optimal control theory

can be applied in socio-hydrology. In a first step we aim

to apply a deterministic framework. For this purpose we

have shown how an existing descriptive stochastic socio-

hydrology model can be transformed into a deterministic

framework. For this purpose we substituted the exogenous

function of rainfall by a periodic deterministic function. Ap-

plying the new water function yields results that can approx-

imate the stochastic original model quite well.

The next step is to formulate an optimization model within

an economic framework.
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