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Abstract The Yalong River is the third largest base of the 13 hydropower bases in China. Long-time series 
of river discharge records are essential for the design of hydropower stations and water resource 
management. The existing monitoring network is scarce and cannot provide sufficient hydrological 
information for the basin. Rainfall–runoff models are popular tools for extending hydrological data in both 
space and time. In this paper, the feasibility of applying a conceptual rainfall–runoff model, HYdrological 
MODel (HYMOD), to the upper Yalong River basin was evaluated. The generalized likelihood uncertainty 
estimation (GLUE) was employed for model calibration and uncertainty analysis. The results show that 
simulated discharge matches the observations satisfactorily, indicating the hydrological model performs well 
and the application of HYMOD to estimate long time-series of river discharge in the study area is feasible.  
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INTRODUCTION 

Located in western Sichuan Province and southeastern Qinghai-Tibet Plateau, the Yalong River is 
one of the biggest tributaries of the Jinsha River. The Yalong has a total length of 1500 km and 
annual runoff volume of about 61 billion m³. Possessing abundant hydropower resources, the basin 
is among the 13 largest hydropower bases of China. Until 2025, 21 levels of hydroelectric power 
stations will be designed and developed. Long time-series of river discharge data are essential for 
the design of hydropower stations, water resource management and ecological effects assessment. 
At present, river discharge monitoring stations within the upstream region of Yalong River basin 
are scarce (Zhang et al., 2000). The hydrological data is insufficient for hydrological analysis, 
which is important for the design of hydropower stations and operation rules. 

Rainfall–runoff models are widely applied to estimate river discharge. Researchers have 
widely applied the distributed hydrological model in the study of the river basin hydrological cycle 
and obtained good results in simulations of hydrological features and runoff estimation (Wu et al., 
2007; Zanon et al., 2013; Zhao et al., 2013). At present, several studies have been carried out to 
analyse the hydrological features of Yalong River basin. Yu et al. (2007) applied a distributed 
hydrological model, the WEP model to the water cycle in the Yalong River basin. For the upper 
stream region of the basin, Chen et al. (2001) estimated characteristics of river discharge at the 
monthly scale based on the HBV conceptual model. 

The research of estimating river discharge at the daily scale in this region is scarce. In this 
paper, a daily step conceptual rainfall–runoff model, HYMOD, is applied in the upstream region of 
Yalong River basin for the purpose of evaluating its feasibility for estimating river discharge of 
long time series. 

 
STUDY AREA 

In this paper, the upper reaches of the Yalong River basin above the Ganzi in situ gauging station 
is selected as the study area. This area has a drainage area of about 33 000 km2 with a river length 
of about 690 km. The dominant climate in this basin is continental climate. Most of the rainfall 
events happen between May and October, which account for 90% to 95% of total annual rainfall, 
varying from 500 to 650 mm. Most part of the upstream region of Yalong River is inaccessible to 
humans due to the high elevation, which makes the construction of hydrological stations difficult. 
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There is only one national hydrological station in the entire upstream of Yalong River basin 
located in Ganzi prefecture. 
 
METHODOLOGY 
(a) HYMOD and data for the model 
HYMOD model is a parsimonious daily step model with typical conceptual hydrological 
components, based on the theory of runoff yield under excess infiltration. The runoff generation 
process is described by a simple rainfall excess model based on the probability-distributed 
principle (Moore, 1985).The model structure is illustrated in Fig. 1. To describe the spatial 
variability of water storage capacity within the basin, the following cumulative distribution 
function is used: 

F(C) = 1 − (1 − 𝐶𝐶
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

)𝐵𝐵𝑒𝑒𝑚𝑚𝑒𝑒                                                      (1) 

where, F is the cumulative rate of storage capacity of some point of the basin; C is the water 
storage capacity; Cmax and Bexp are two parameters describing basin maximum water storage 
capacity (mm) and the degree of spatial variability within the basin, respectively. The portion of 
precipitation that exceeds the water storage capacity is treated as runoff. The evapotranspiration is 
equal to potential evapotranspiration (PET) if enough water is available. Otherwise, it equals the 
available water storage. Based on the parameter Alpha, the runoff is divided into quick flow and 
slow flow, which are routed through three identical quick flow tanks (Q1, Q2, Q3) and a parallel 
slow flow tank, respectively. The flow rates in the routing system are described by the resident 
time in the quick tanks Kq (day) and the slow tank Ks (day), respectively.  

 
Fig. 1 The schematic description of HYMOD. 
 
The parameters related to runoff generation (Cmax, Bexp and Alpha) were assumed to be 

identical in every sub-basin. The two routing parameters of each sub-basin describe the process 
of water flow movement from the sub-basin to the outlet of the whole basin. The travel time to 
the basin outlet varies in different sub-basins. For each time step, the output of the revised 
HYMOD is the sum of the water flow from each sub-basin, which arrives at the outlet of the 
basin in that step. 

The input forcing data include basin average rainfall and PET. In this paper, 8 years (1980–
1987) of rainfall data of each sub-basin is selected from four national weather stations (Ganzi, 
Seda, Shiqu, Qingshui). The PET data of each sub-basin were obtained from a global 30-min 
grid PET data set: Ahn and Tateishi (1994) PET. In order to account for the spatial heterogeneity 
of the meteorological condition in the target basin, the study area was divided into four sub-
basins. The observed runoff data (1980–1987) from the Ganzi in situ gauging station were used 
for calibration and validation. The calibration period is from 1980 to 1983 and the validation period is 
1984–1987. 

Q1 Q2 Q3 

Qt 
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(b) The GLUE uncertainty analysis method 

The GLUE (Generalized Likelihood Uncertainty Estimation) method is the most widely used and 
efficient method applied in studying the hydrological model uncertainty. The method is a global 
parameters sensitivity analysis method developed based on the importance sampling and 
regionalized sensitivity analysis of the RSA (Beven et al., 1992). GLUE distinguishes different 
parameters using likelihood. This method takes into account the facts that the optimal is the best, 
and avoids the risks of using a single optimal value to predict as well. The GLUE method is 
similar to the RSA method in employing the sensitivity analysis of comparing the distribution of 
the behavioural parameter sets and the original parameter sets. It can also use the cumulative 
likelihood for global sensitivity analysis (Blasone et al., 2008). The key point of the GLUE 
method is that the quality of the model simulation results is not determined by a single parameter 
but a set of model parameters of the model. Therefore, the GLUE method uses the Monte Carlo 
method to randomly sample the parameter values from the prior distribution within a given initial 
parameter distribution space. Then we form multi-group sets of parameter combinations to run the 
model (Beven et al., 2001) 

In this paper, the GLUE method is applied to analyse the uncertainty of the HYMOD model 
with the sequential daily runoff data (1980–1987) from the Ganzi in situ gauging station. For the 
case study, five parameters are included in the model calibration. Using a Latin-Hypercube 
sampling algorithm, 50 000 parameter sets are randomly selected based on the parameter ranges 
listed in Table 1 using the Monte Carlo method. The prior distribution of parameters is assumed to 
have a uniform distribution. To assess the performance of each parameter set, the Nash-Sutcliffe 
(NS) coefficient is chosen as the objective function. After calculating the NS coefficient values for 
each parameter set, the likelihood threshold for rejecting the non-behavioural parameter sets is 
subjectively decided as 0.6 (Sun et al., 2010). Parameter sets with NS coefficient values larger 
than 0.6 are chosen as behavioral parameter sets. The cumulative probability distribution of 
discharge is carried out with the simulated discharge data derived by the behavioural parameter 
sets. Finally, the 5% and 95% quantile of the cumulative distribution are used as the lower and 
upper limit of the uncertainty band. 

To evaluate the simulated results and analyse the model uncertainty, the P-factor and R-factor 
are calculated. The P-factor is the percentage of the measured data bracketed by the 95% predicted 
uncertainty. If the P-factor is bigger and closer to 1, it indicates that the uncertainty interval 
brackets more measured runoff data and the simulation result is better. The R-factor is the ratio of 
the average width of uncertainty intervals and the standard deviation of measured runoff data. A 
larger P-factor and a smaller R-factor indicates that the uncertainty interval is narrower and 
brackets more measured runoff data and thus the simulation results are better.  

Table 1 Description of the HYMOD parameters. 
Parameter Unit Range Description 
Cmax mm 1–100 Maximum storage capacity 
Bexp — 0–2 Degree of spatial variability of the soil moisture capacity 

Alpha — 0.2–0.99 Factor distributing the flow between slow and quick 
release reservoirs 

Kq day 0.5–1.2 Residence time of the slow release reservoir 
Ks day 0.01–0.5 Residence time of the quick release reservoirs 

RESULTS AND DISCUSSION 

(a) Sensitivity analysis of parameters 

The Monte Carlo method was employed to randomly generate 50 000 parameter sets. Then each 
parameter set was applied to run the model. Among the 50 000 parameter sets, the NS coefficient 
of simulated river discharge of 1953 sets of parameters reaches 0.6. These sets of parameters were 
identified as behavioural ones and were used to analyse the parameter uncertainties and for the 
ensemble simulation.  
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Although the GLUE method treats the combination of parameter values as a whole parameter 
set, the sensitivity of each model parameter can be inferred from the scatterplot (Fig. 2) of 
identified behavioural values of every parameter. Among the five model parameter, only the Cmax 
shows a single peak distribution. The values of the other four parameters span the whole parameter 
ranges, which is a common representation of equifinality. The prior and posterior distributions of 
the model parameters were also analysed (Fig. 3). If the posterior distribution deviates from the 
prior distribution (i.e. the uniform distribution) significantly, the parameter is considered as a 
sensitive parameter (Peters et al., 2003; Beven et al., 2001; Sun et al., 2012). The result shows that 
posterior distributions of Cmax, Bexp and Kq, are quite different from prior distribution, indicating 
that these parameters are more sensitive than the other two (Ks and Alpha). 

 

 

 
Fig. 2 Scatter plots of five parameters values versus likelihoods for the behavioural parameter sets.  
 

  
Fig. 3 Posterior distributions of likelihood for the parameters conditioned on in situ observations (black 
lines) and the assumed prior uniform distribution (dotted lines).  

 

(b) Results of the runoff modelling and uncertainty analysis 

The simulated river discharge and the value of efficiency are shown in Fig. 4 and Table 2, 
respectively. The NS coefficients of the parameter sets with best simulation of the calibration and  
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Fig. 4 The observations and simulation results of the daily river discharge for the calibration and 
validation period at Ganzi gauging station. 

 
validation periods are 0.75 and 0.74, respectively. Judging from the hydrograph, the simulated 
river discharge could reproduce the observations reasonably. The scatterplot (Fig. 5) of the NS 
coefficients of the behavioural parameters demonstrates that a high NS coefficient in the 
calibration period is accompanied by a high NS coefficient in the validation period, indicating that 
the parameter sets performing well in calibration period also perform well in the validation period. 

Regarding the simulation uncertainty issue, the P-factors in the calibration and validation 
period are 0.40 and 0.58, i.e. 40% of the observed data fall into the uncertainty interval of the 
ensemble simulation in the calibration period, while in the validation period, it is 58%. The R-
factors in the two periods are about 1.3. Comparing the observed and simulated daily runoff 
hydrograph (Fig. 4) of Ganzi gauging station shows that for most time of a year, the simulation 
matches observations well. However, in the winter and snow melting seasons, there is some 
deviation between the observations and simulations. There are two possible reasons: first, for such 
a large simulation area (about 33 000 km2), precipitation data from only four rainfall stations are 
available for simulation. Secondly, HYMOD is simple in its structure and the snow melting 
process is not considered. Generally, even using such a limited number of precipitation data, the 
simulation results are acceptable. It is concluded that HYMOD is applicable for runoff simulation 
in the upstream region of the Yalong River basin. 

 
Table 2 The values of evaluation criteria in calibration and validation period. 
 NS Coefficient P-factor R-factor 
Calibration period 0.75 0.40 1.32 
Validation period 0.74 0.58 1.35 

 

 
Fig. 5 Scatter plots of the NS coefficient values of the behavioural parameters for the calibration period 
versus for the validation period. 
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CONCLUSIONS 

In this study, the HYMOD model was applied to the upper reaches of the Yalong River basin, 
above the Ganzi in situ gauging station, and the GLUE method was used for model calibration and 
uncertainty analysis. The results show that the parameters Cmax, Bexp and Kq of the HYMOD model 
are relatively sensitive. The river discharge simulation fit the in situ observation well. Utilization 
of limited precipitation data and the fact that snow melting processes are not considered in the 
model structure are two possible reasons for the relatively low performance of the model 
simulation in winter and snow melting periods. In general, the model is feasible for rainfall–runoff 
process simulation of the study area. With more rainfall data, HYMOD is expected to perform 
better and be useful to estimate long time-series of river discharge at the daily scale in the 
upstream region of Yalong River basin. 
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