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Abstract We used maximum entropy to model streambank erosion potential (SEP) in a central Appalachian
watershed to help prioritize sites for management. Model development included measuring erosion rates,
application of a quantitative approach to locate Target Eroding Areas (TEAs), and creation of maps of
boundary conditions. We successfully constructed a probability distribution of TEAs using the program
Maxent. All model evaluation procedures indicated that the model was an excellent predictor, and that the
major environmental variables controlling these processes were streambank slope, soil characteristics, bank
position, and underlying geology. A classification scheme with low, moderate, and high levels of SEP derived
from logistic model output was able to differentiate sites with low erosion potential from sites with moderate
and high erosion potential. A major application of this type of modelling framework is to address uncertainty
in stream restoration planning, ultimately helping to bridge the gap between restoration science and practice.
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INTRODUCTION

A growing number of scientists agree that where we are doing restoration and the scale at which
projects are implemented, are critical for effective restoration (Wohl et al., 2005). Predictive models
and assessment tools that are currently used in restoration planning vary greatly in parameter
selection and precision, which has implications for the scale and applications for which they are
relevant (Merritt et al., 2003). While several of these models have been useful for watershed
management (Rosgen, 2001; Simon et al., 2003), a niche remains for process models that provide a
balance between high resolution prediction and broad-scale applicability. Objective decision support
tools that incorporate geographic information system (GIS) and probability modelling could increase
efficiency of restoration site selection and facilitate development of watershed-scale restoration
plans (Wohl et al., 2005) by elucidating relative streambank erosion potential (SEP) within the
context of the watershed. Recent improvements and availability of remote sensing data (Goetz,
2006) used in conjunction with Bayesian reasoning has the potential to improve the resolution and
precision of SEP prediction over large spatial extents (Regmi et al., 2010).

We applied maximum entropy, a general purpose, machine learning method that enables
prediction from incomplete information (Phillips ez al., 2006), to estimate the spatial distribution of
target eroding areas (TEAs) undergoing excessive streambank erosion. We then used this probability
distribution to create a classification scheme for streambank erosion potential (SEP). We believe
this approach has great potential for enhancing watershed management by helping identify sites with
the greatest restoration potential, which is critical for long-term success (Wohl et al., 2005).

STUDY AREA AND METHODS

A model of SEP was constructed for a portion of the Cacapon River watershed within the larger
Potomac River basin. The watershed drains about 2320 km? within Hardy, Hampshire, and Morgan
counties, West Virginia. Climate is considered humid continental, characterized by hot summers,
cold winters, and average annual precipitation near 900 mm. Streams in the study area typically flow
through wide, slightly entrenched, shallow channels (Pitchford, 2012). We predicted SEP for
113 km of 1st-3rd order streams with median daily flowrates of 2-31 m?/s in the mainstem and
0.04-1.2 m*/s in a representative tributary during the study period (available from the USGS at
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www.waterdata.usgs.gov). Elevation within the study area ranged within 210-423 m and the
underlying geology consisted of alluvium (47%), shale (29%), sandstone (17%), and limestone (6%)
(West Virginia Geological and Economic Survey, 2011).

Erosion rates were monitored at a total of 151 sites distributed among 30 stream reaches using
erosion pin and streambank profile surveys (Hupp et al., 2009) during 2010-2011. Streambank
migration rates were quantified using repeated measurements of 122 c¢cm long, 0.95 cm diameter
reinforcing rods to calculate an average migration rate for each site in m/year (Hupp et al., 2009).
Also, repeated streambank profile surveys were conducted by measuring the horizontal distance
from a level survey rod to the face of the streambank at 15 cm vertical increments to calculate a rate
of change in sediment storage for each site. To determine which survey locations represent TEAs,
we used cluster and outlier analysis (Anselin Local Moran’s 1) within the program ESRI®
ArcMap™ 10.0 to determine locations of significant clustering of high erosion rates. Sites that had
statistically significant clustering of high erosion rates (Z > 1.65; a <0.1) using either survey method
were considered to be TEAs.

Airborne Light Detection and Ranging (LiDAR) was flown over the study area in April 2010 by
the West Virginia University Natural Resource Analysis Center (WVUNRAC). Data were captured
at an altitude of 1676 m and a speed of 135 knots using an Optech Inc. (Ontario, Canada) ALTM3100
with a vertical accuracy of 15 cm. These data were post-processed to create models for bare ground
and vegetation within the study area. LiDAR and other available data were used to create
environmental layers to represent features associated with streambank erosion (Table 1).

Table 1 Environmental variables used to model streambank erosion potential (SEP) in the Cacapon River
Watershed, West Virginia.

Variable Source Significance Min Max Mean (SE)
Geology WVGES Geological characteristics N/A N/A N/A

Elevation Bare earth DEM  Position in the watershed 209 423 292 (0.06)
Slope Calculated Steepness 0 81 9.6 (0.01)
Aspect Calculated Orientation, exposure 0 360 181 (0.11)
Curvature Calculated Steepness, concavity, convexity -910 669 —-0.2 (0.02)
Profile curvature Calculated Steepness, concavity, convexity -395 481 0.2 (0.01)

Plan curvature Calculated Steepness, concavity, convexity -514 378 0.0 (0.01)

Solar radiation Calculated Sub-aerial processes 93189 1423170 1229151 (117)
Flow accumulation  Calculated Run-off velocity, potential energy 0 24641804 119192 (1 354)
Moisture index Calculated Soil water content —4 17 0.0 (0.00)

Bank stress index Calculated Shear stress N/A N/A N/A
Vegetation height ~ Vegetation DEM  Surcharge, buffer characteristics -11 77 7.8 (0.01)

Soil type SSURGO Soil characteristics N/A N/A N/A

Soil erodibility SSURGO Soil shear strength 0 0.4 0.2 (0.00)

The computer program, Maxent, version 3.3.2, was used to model SEP by estimating the
unknown distribution (m) over the set of pixels in the study area. Maxent assigned a probability of
occurrence to each point (x), that is approximated by solving for the entropy of 7 using the equation:

H () = —XxexT () InT(x) e
where In is the natural logarithm, and 7 is a positive value representing the probability of occurrence
for the target phenomena that sums to one over the pixels in the study extent.

Thirty replicate bootstrap runs were conducted using 25% of the training sites that represent
TEAs. Evaluation of model performance included a threshold-dependent, one-tailed binomial test
on model omission and predicted area to determine if the maximum entropy distribution was
predicting better than random. A threshold independent, area under curve (AUC) analysis was also
used, where a value of <0.5 indicates the model predicts no better than random, 0.5-0.7 indicates
fair predictive capacity, 0.7-0.9 indicates a good predictive capacity, and values >0.9 are indicative



124 Jonathan Pitchford et al.

of an excellent model (Phillips et al., 2006). The influence of environmental variables on the
distribution of TEAs was also generated by Maxent to help assess the influence of each
environmental variable on the prediction.

A final map was created from the logistic model output to represent three levels of SEP (i.e.
low, moderate, and high). We conducted a one-way Analysis of Variance (ANOVA) to test the
strength of our classification scheme, using normally distributed migration rates (m/year) as the
dependent variable. A significant ANOVA was followed with a Tukey’s Honest Significant
Difference (HSD) post hoc test to compare migration rates between low, moderate, and high SEP.
Significance for all tests was set at the « = 0.05 level.

RESULTS

Migration rates ranged from —0.11 to 0.95 m/year with an average migration rate of 0.24 m/year (SE
=(0.02). Net change in sediment storage ranged from a net loss of 3.04 m?/year to a net gain of 0.80
m?/year with an average net loss of 0.39 m?/year (SE = 0.06). A total of 29 TEAs were identified
from the 151 monitored locations. Twenty-five TEAs were detected based on migration rates of
0.53-0.93 m/year, and six TEAs were detected based on net sediment losses of 1.2-2.29 m?/year.

Nine of the original 14 environmental variables contributed unique information to the model
and were used to create the final model of SEP. The average training AUC value for 30 model runs
was 0.994 (SE = 0.0004), which indicated that the model had excellent predictive capacity. The
binomial omission test was significant (P < 0.01, one tailed) for all data partitions at all selected
threshold values indicating that the model predicted much better than random. The average logistic
threshold for the minimum training presence (MTP) for all model runs was 0.209 (SE = 0.02). All
logistic threshold values greater than the MTP were considered to have moderate or high SEP, which
included 3.1% of the study extent. The most important environmental variables in the model were
slope (32.7%), soil type (29.2%), bank stress index (20.6%), and underlying geology (8.7%)
(Table 2).

Table 2 Average percent contribution and permutation importance values for each predictor variable in a
maximum entropy model of stream bank erosion potential (SEP).

Variable Percent contribution (%) Permutation importance® (%)
Slope 32.7 48.6

Soil type 29.2 25.9

Bank stress index 20.6 9.1

Geology 8.7 5.2

Moisture index 3.6 7.2

Vegetation height 2.6 0.9

Elevation 1.4 2.6

Aspect 1.2 0.4

Plan Curvature 0.1 0

2 Permutation importance values for each variable are determined by randomly permuting the variable values
among the training points and quantifying the ensuing decrease in training AUC.

The logistic probability of a TEA increased with increasing slope up to approximately 25° and
then declined as slope increased until an asymptote was reached just above a logistic probability of
50% (Fig. 1(a)). Potomac soils were associated with the highest probability followed closely by
Fluvaquents and Philo-2 soils compared to other soil types (Table 3; Fig. 1(b)). Areas along the
outside of meander bends had the highest probability of being a TEA followed by the inside of
meander bends, and other levels of bank stress having similar probability (Fig. 1(c)).
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Fig. 1 The influence of: (a) slope (°), (b) soil type, (c) bank stress index, and (d) underlying geology on
streambank erosion potential (SEP) in the Cacapon River watershed.

Table 3 Percent sand, bulk density, soil erodibility for highly erodible soil types in the Cacapon River
Watershed. Percent sand and bulk density are estimated ranges from 0—150 cm soil depth. Soil erodibility is
an average value over 0—150 cm.

Soil type Percent sand (%) Bulk density Soil erodibility (Kr)
Potomac 43 -100 1.2-1.6 0.24
Philo — 1 0-95 1.2-1.4 0.32
Fluvaquents 0-60 1.0-1.5 0.39
Lithic udorthents 0 — 50 1.2-1.4 0.32
Philo — 2 0-95 1.2-1.4 0.29

With regard to underlying geology, areas comprised of alluvium had the highest probability of
being a TEA with areas containing sandstone, limestone, and shale units exhibiting respective
decreases in probability (Fig. 1(d)).

Our classification scheme built from logistic model output shows that 96.9% (8.5 km?) of the
study extent was below the MTP, and therefore had low SEP (Fig. 2). Areas with moderate and high
SEP made up 2.7% (0.24 km?) and 0.3% (0.03 km?) of the study extent, respectively. An ANOVA
revealed that our classification scheme was a reliable predictor of streambank migration rate (£7,149
=33.2; P <0.001), as sites with low SEP, which averaged 0.22 m/year (SE = 0.02) were different
from sites with moderate SEP with an average of 0.41 m/year (SE = 0.03) (P < 0.001), and from
sites with high SEP, which averaged 0.45 m/year (SE = 0.04)(P < 0.001).
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Fig. 2 Logistic output from a maximum entropy model of streambank erosion potential (SEP) in a portion
of the Cacapon River Watershed, West Virginia.

CONCLUSIONS AND PERSPECTIVES

All model validation procedures indicated that our model performed well and our classification
scheme was useful for predicting SEP. Thus, we believe this approach could be applied in other
watersheds to enhance management by providing a high resolution prediction over large spatial
extents. The most important predictor was slope where bank slopes of 25° had the highest probability
of being a TEA. Steeper slopes are common in the watershed, but are typically composed of shale
and thus have greatly reduced erosion rates compared to alluvial reaches. Soil type was also
important as Fluvaquents and Philo soils, which contain as much as 85% sand in deeper horizons
(i.e. 1-2 m) and Potomac soils, which contain as much as 100% sand (USDA, 2011), were associated
with high SEP. Deeper soil horizons are often exposed in incised channels where soils with high
sand content are very susceptible to fluvial erosion (Micheli & Kirchner, 2002; Simon et al., 2008;
Pitchford, 2012). The outside of meander bends had higher SEP compared to other levels of bank
stress. This was not surprising as these areas are exposed to the highest amount of shear stress
(Bloom, 1998). With regard to underlying geology, alluvium had the highest SEP. This was also not
surprising as alluvium is previously eroded material (Bloom, 1998). Overall, the influence of
boundary conditions was in agreement with other studies that have shown streambank slope, soil
characteristics, bank position, and underlying geology are important predictors of SEP (Simon et
al., 2003).

Our classification scheme was effective for differentiating sites with low SEP from sites with
moderate and high SEP, but could not distinguish between moderate and high levels of SEP.
Although variability in streambank migration in these classes overlapped, a larger sample size
among sites with high SEP would improve the ability to detect a difference. Overall, our results
show that this approach has utility for gauging relative stability at the watershed (50-500 km?),
segment (100—-10 000 m?), and reach (10-1000 m?) scale and could help prevent unnecessary
construction in areas that are relatively stable, yet may appear to be degrading. Such areas can
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become a liability following restoration activity that results in reductions in flood plain roughness,
which can cause bank failure (Smith & Prestegaard, 2005; Pitchford, 2012).

We created only three levels of SEP from our model, but we could have easily created more
categories of SEP, or generated a continuous prediction to enhance relative comparisons within the
watershed. This could be very insightful for prioritizing sites for management and could help avoid
attempts to stabilize streambanks with low probability of success. For example, the model can help
to differentiate between areas with clay soils positioned along straight reaches (lower SEP), which
have higher probability of restoration success compared to areas with sandy soils on the outside of
meander bends (high SEP). Although an area with high SEP may erode at higher rates, it may be too
dynamic to attempt streambank stabilization. Other applications for the model include greater
understanding of conditions associated with stable sites within the watershed, which could help to
inform restoration design similar to the reference reach approach used in Natural Channel Design
(NCD) (Rosgen, 1998).

Overall, we believe that this maximum entropy model of SEP is a great example of an
assessment tool that could enhance watershed planning by helping to prioritize sites for
management, assess the relative importance of boundary conditions, and identify characteristics
associated with stable sites within the watershed. This type of process model is critical for bridging
the gap between restoration science and practice, which will ultimately improve the success of
watershed management initiatives worldwide.
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